Xerox SIGMA 6 Computer

Reference Manual

FROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERU

ROXEROXEROXEROXEROXEROXEROXERK
ROXEROXEROXEROXEROXEROXEROXE
FROXEROXEROXEROXEROXEROXEROXE

° IXEROXEROXEROXEROXEROXEROXERO
OXEROXEROXEROXEROXEROXEROXER(C
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXERC

R OXEROXEROXEROXEROXEROXEROXEI:
EROXEROXEROXEROXFROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
PROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

Mnemonic Code
LOAD STORE

Ll 22
LB 72
LH 52
L 32
LD 12
LCH 5A
LAH 58
LCcw 3A
LAW 38
LCD 1A
LAD 18
LS 4A
LM 2A
LCFI 02
LCF 70
XW 46
ST8 75
STH 55
STW 35
STD 15
STS 47
STM 28
STCF 74
ANALY ZE/INTERPRET
ANLZ 44
INT 68

XEROX SIGMA 6 INSTRUCTIONS

Instruction Name

Lood Immediate

Lood Byte

Load Halfword

Lood Word

Load Doubleword

Load Complement Halfword

Load Absolute Halfword

Lood Complement Word

Load Absolute Word

Load Complement Doubleword

Load Absolute Doubleword

Lood Selective

Load Multiple

Load Conditions ond Floating Control Immediate
Load Conditions and Floating Control
Exchange Word

Store Byte

Store Halfword

Store Word

Store Doubleword

Store Selective

Store Multiple

Store Conditions and Floating Control

.

Analyze
Interpret

FIXED-POINT ARITHMETIC

Al 20
AH 50
AW 30
AD 10
SH 58
W 38
D 18
MI 23
MH 57
MW 37
DH 56
ow 36
AWM 66
MTB 73
MTH 53
MTW 33
COMPARISON
Cl 21
CcB 71
CH 51
cw 31
cD 11
cs 45
CLR 39
Cm 19
LOGICAL

OR 49
EOR 48
AND 48
SHIFT

S 25
SF 24
CONVERSION
CVA 29
CVvs 28

Add Immediate

Add Halfword

Add Word

Add Doubleword
Subtract Halfword
Subtract Word
Subtract Doubleword
Multiply Immediate
Multiply Halfword
Multiply Word

Divide Halfword
Divide Word

Add Word to Memory
Modify and Test Byte
Modify and Test Halfword
Modify and Test Word

Compare Immediate

Compare Byte

Compare Halfword

Compare Word

Compare Doubleword

Compare Selective

Compare with Limits in Register
Compare with Limits in Memory

OR Word
Exclusive OR Word
AND Word

Shift
Shift Floating

Convert by Addition
Convert by Subtraction

32

LYELLLLELREBRRBUBEY

89

5588839

41
4]
41
42

42

22558522 2588

&8s

Mnemonic Code

Instruction Name Poge

FLOATING-POINT ARITHMETIC (optional)

FAS 3D
FAL 1D
FSS c
FSL IC
FMS 3F
FML IF
FDS 3E
FDL 1€
DECIMAL

DL 7E
DST 7F
DA 79
DS 78
DM 78
DD 7A
DC 70
DSA 7C
PACK 76
UNPK 77
BYTE STRING
MBS 61
CBS 60
T8S 4
78S 40
EBS 63
PUSH DOWN
PSW 09
PLW 08
PSM 08
PLM 0A
MSP 13
EXECUTE/BRANCH
EXU 67
BCS 69
BCR 68
BIR 65
BDR 64
BAL 6A
CALL

CALI 04
CAL2 05
CAL3 06
CAL4 07

Floating Add Short 51
Floating Add Long 51
Floating Subtract Short 51
Floating Subtract Long 52
Floating Multiply Short 52
Floating Multiply Long 52
Floating Divide Short 52
Floating Divide Long 52
Decimal Load

56
Decimal Store 56
Decimal Add 57
Decimal Subtract 57
Decimal Multiply 57
Decimal Divide 58
Decimal Compare 58
Decimal Shift Arithmetic 58
Pack Decimal Digits 59
Unpack Decimal Digits 59

Move Byte String

Compare Byte String
Translate Byte String
Translate ond Test Byte String
Edit Byte String

28R

Push Word

Pull Word

Push Multiple

Pull Multiple
Modify Stack Pointer

233%%

Execute

Branch on Conditions Set

Branch on Conditions Reset
Branch on Incrementing Register
Branch on Decrementing Register
Branch and Link

FFJIJAY

Call 1
Call 2
Call 3
Call 4

NNNN

CONTROL (privileged)

LPSD OE
XPSD OF
LRP 2F
MMC 6F
WAIT 2E
RD 6C
wD 6D

Load Progrom Status Doubleword
Exchange Program Status Doubleword
Load Register Pointer

Move to Memory Control

Wait

Read Direct

Write Direct

dAJAFAY

lNPUT/OUTPUT (privileged)

SIO 4C
HIO 4F
TIO 4D
OV 4E
AIO 6E

Start Input/Output

Halt Input/Output

Test Input/Output

Test Device

Acknowledge Input/Output Interrupt

Ieees

XEROX

Xerox SIGMA 6 Computer

Reference Manual

90 17 13B

June 1971

File No.: 1X13

XL47, Rev. 0
© 1970, 1971, Xerox Corporation Printed in U.S.A.

REVISION

This publication is a revision of the Xerox SIGMA 6 Computer Reference Manual, 90 17 13A, and describes the
new SIGMA 6 Computer System features. Changes to the previous manual are indicated by a vertical line in the
margin of the affected page.

RELATED PUBLICATIONS

Title ' Publication No.,
Xerox Sigma Glossary of Computer Terminology 90 09 57
Xerox Meta-Symbol/LN, OPS Reference Manual 90 09 52
Xerox Symbol/LN, OPS Reference Manual 901790
Xerox Macro=Symbol/LN, OPS Reference Manual 901578

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

SIGMA 6 SYSTEM

Introduction

General Characteristics

Standard and Optional Features

Real-Time Features

General -Purpose Features

Time-Sharing Features
Multiuse Features

SIGMA 6 SYSTEM ORGANIZATION

Information Format

Core Memory
Dedicated Memory Locations

Information Boundaries

Computer Modes
Master Mode

Slave Mode

CPU Fast Memory
Central Processing Unit

General Registers and Register Block Pointer__

Memory Control Storage

Memory Map and Access Protection
Instruction Format

Immediate Operand

Memory Reference Addresses
Memory Address Control

Memory Map and Access Protection

Memory Write Locks
Program Status Doubleword

Interrupt System

Internal Interrupts

External Interrupts
States of an Interrupt Level

Control of the Interrupt System
Time of Interrupt Occurrences
Single-Instruction Interrupts

Trap System

Nonallowed Operation Trap

Unimplemented Instruction Trap
Push~Down Stack Limit Trap

Fixed-Point Overflow Trap

Floating~-Point Arithmetic Fault Trap
Decimal Arithmetic Fault Trap
Watchdog Timer Runout Trap

Call Instruction Traps

INSTRUCTION REPERTOIRE

Load/Store Instructions

Analyze/Interpret Instructions

Fixed-Point Arithmetic Instructions
Comparison Instructions

Logical Instructions

Shift Instructions

Floating~-Point Shift

Conversion Instructions

Floating=Point Arithmetic Instructions

Floating-Point Numbers

CONTENTS

—

[+ 3 < N &, T - G g

6*0*0‘0*0@@0)&) (o<}

11
1
11

12
12
14
14
15
17
18
18
20
20
21
21
22
22
29 4.
24
25
25

26
26
27

31
37
39

47
49

50
50

Unimplemented Floating-Point Instructions
Floating-Point Add and Subtract
Floating-Point Multiply and Divide
Condition Codes for Floating-Point
Instructions

Decimal Instructions

Packed Decimal Numbers _

Zoned Decimal Numbers

Decimal Accumulator

Decimal Instruction Format

Illegal Digit and Sign Detection
Overflow Detection

Decimal Instruction Nomenclature

Condition Code Settings

Byte-String Instructions

Push-Down Instructions

Stack Pointer Doubleword

Push-Down Condition Code Settings
Execute/Branch Instructions

Call Instructions

Control Instructions

Program Status Doubleword

Loading the Memory Map

Loading the Access Protection Controls
Loading the Memory Write Protection Locks
Interruption of MMC

Read Direct Internal Computer Control

(Mode 0)
Write Direct Internal Computer Control
(Mode 0)

Write Direct, Interrupt Control (Mode 1)
Input/Output Instructions

I/O Address

I/O Unit Address Assignment

1/O Status Response
Status Information for SIO

INPUT/OUTPUT OPERATIONS

IOP Command Doublewords

Order

Memory Byte Address

Flags

Byte Count

OPERATOR CONTROLS

Processor Control Panel

POWER

CPU RESET/CLEAR

1/O RESET

LOAD

UNIT ADDRESS

SYSTEM RESET/CLEAR

NORMAL MODE

-RUN

WAIT

79

80

81
81
82
82
82
82
83

89
90

N
91
92

93

93
93
924
94
94
94
94
94
94

INTERRUPT 94
PROGRAM STATUS DOUBLEWORD______ 94
INSERT 94
INSTR ADDR 95
ADDR STOP 95
SELECT ADDRESS 96
STORE 96
DISPLAY. 96
DATA 96
COMPUTE 96
CONTROL MODE 97
MEMORY FAULT 97
ALARM 97
AUDIO 97
WATCHDOG TIMER 97
INTERLEAVE SELECT 97
PARITY ERROR MODE 97
PHASES 98
REGISTER SELECT 98
SENSE 98
CLOCK MODE 98
Loading Operation 98
Load Procedure 98
Load Operation Details 99
INDEX 135
APPENDIXES
A. REFERENCE TABLES 100
XDS Standard Symbols and Codes 100
XDS Standard Character Sets 100
Control Codes 100
Special Code Properties 100
XDS Standard 8-Bit Computer Codes
{EBCDIC) 101
XDS Standard 7-Bit Communication Codes
(ANSCII) 101
XDS Standard Symbol~Code Correspondences 102
Hexadecimal Arithmetic 106
Addition Table 106
Multiplication Table 106
Table of Powers of Sixteen)q 107
Table of Powers of Tenig 107
Hexadecimal-Decimal Integer Conversion
Table 108
Hexadecimal-Decimal Fraction Conversion
Table 114
Table of Powers of Two 118
Mathematical Constants 118

N hwN =~

(W R]

-1.
=2. Additional Instruction Timing

REFERENCE DIAGRAMS 119
Notes on Basic SIGMA 6 Instruction Execution

Cycle 1
Basic SIGMA 6 Instruction Execution Cycle 1
Floating-Point Instruction Execution 122

Floating-Point Multiplication and Division___ 122

L

Floating=Point Addition and Subtraction 123

Floating=Point Shift 124
Edit Byte String Instruction Execution 125
SIGMA 6 INSTRUCTIONS (MNEMONICS) 126
INSTRUCTION TIMING 128

FIGURES
SIGMA 6 Computer System v
A Typical SIGMA 6 System 2
Information Boundaries 9
SIGMA 6 Central Processing Unit 10
Index Displacement Alignment 14
Generation of Actual Memory Addresses 16
Typical Interrupt Priority Chain 18
Operational States of an Interrupt Level
Processor Control Panel 93
TABLES

SIGMA 6 Dedicated Memory Locations________ 9
SIGMA 6 Interrupt Locations 19
Summary of SIGMA 6 Trap System 23
Glossary of Symbolic Terms 30

ANALYZE Table for SIGMA 6 Operation Codes__ 38
Floating-Point Number Representation - 1 |
Condition Code Settings for Floating-Point
Instructions 53
Status Bits for I/O Instructions 84
Program Status Doubleword Display_______ 95

Basic Instruction Timing 129
133

Sigma 6 Computer

1. SIGMA 6 SYSTEM

INTRODUCTION

The SIGMA 6 computer system can concurrently process
operations for business, engineering/scientific, and general-
purpose applications. The basic system consists of a central
processor, 32, 768 words of memory, and independent, multi-
plexed 1/O capability. It is easily expandable by adding
memory units, input/output processors, and peripheral de-
vices. Figure 1 shows a typical SIGMA 6 system.

A SIGMA 6 system consists of the followingmajor elements:

A memory consisting of up to four magnetic core storage
units,

A central processor unit (CPU) that addresses core mem-
ory, fetches and stores information, performs arithmetic
and logical operations, sequences and controls instruc-
tion execution, and controls the exchange of information
between core memory and other elements of the system,

An input/output system cor.trolled by one or more input/
output processors (IOPs), each providing data transfer
between core memory and peripheral devices. The IOPs
have separate access to core memory which are inde-
pendent of the CPU. They operate asynchronously
and simultaneously with the CPU.

GENERAL CHARACTERISTICS

A SIGMA 6 computer system has features and operating
characteristics that permit efficient functioning in real-
time, general-purpose, time=sharing, and multiuse computing
environments:

Word-oriented memory (32-bit word plus parity bit)
which can be addressed and altered as byte (8-bit),
halfword (2-byte), word (4-byte), and doubleword
(8~byte) quantities.

Full parity checking for both CPU/memory and input/
output operations.

Memory expandable from 32, 768 to 131, 072 words
(131,072 10 524,288 bytes) in increments of 16,384 words.

Direct addressing of the entire core memory, within the
primary instruction word and without the need for base
registers, indirect addressing, or indexing.

Indirect addressing, with or without postindexing.

Displacement index registers, automatically self-
adjusting for all data sizes.

Immediate addressing of operands, for greater storage
efficiency and increased speed.

Sixteen general-purpose registers, expandable (in
blocks of 16) to 512 to reduce transfer of data into and
out of registers in a multiuse environment,

Hardware memory mapping, which obviates the problem
of memory fragmentation and provides dynamic program
relocation.

Selective memory access protection with four modes for
system and information security and protection.

Selective memory-write protection.

Watchdog timer, assuring nonstop operation.

Real-time priority interrupt system with automatic iden-
tification and priority assignment, fast response time,

and up to 235 levels that can be individually armed,
enabled, and triggered by program control.

Interruptibility of long instructions, guaranteeing fast
response to interrupts.

Avutomatic traps, for error conditions and for simulation
of optional instructions not physically implemented, all
under program control.

Power i’cil-sofe, for automatic, safe shutdown in the
event of a power failure,

Multiple interval timers, with a choice of resolutions |
for independent time bases.

Privileged instruction logic (master/slave modes), for
concurrent, time-shared operation,

Complete instruction set including:

e Byte, halfword, word, and doubleword operations.

e Use of all memory-referencing instructions for
register-to-register operations, with or without

indirect addressing and postindexing, and within
the normal instruction format.

e Multiple register operations.

e Fixed-point arithmetic operations in halfword,
word, and doubleword modes.

e Optional floating-point hardware operations, in
short and long formats, with significance, zero,
and normalization control and checking, all under
program control.

e Full complement of logical operations (AND, OR,
exclusive OR).

¢ . Comparison operations, including compare between
limits (with limits in memory or in registers).

SIGMA 6 System 1

CENTRAL PROCESSOR UNIT
(CPU)

Standard Features:

Decimal arithmetic unit
Memory map

Access protection

Menmory write protection

Two register blocks

Power fail-safe

Two real-time clocks

Externa! interface {(direct 1/0)

Optional Features:

Two additional real-time clocks
30 odditional register blocks
Floating=-point arithmetic
External priority interrupt system
(up to 224 levels)

- ————
——— e 1
MEMORY UNIT ‘l— MEMORY UNIT 1
Standard Features: iv Standord Features: ﬁI
e 32,768 words | o 16,3840r |
e Two ports (multiacess) 32,768 words]
o Two-way {”'“'“”i“g I e Two ports (multiaccess)
e Four-way m'.erleavmg | o Two-way interleaving I
o Parity checking I e Four~way interleaving |
e Parity checking |
Optiona! Features: |
e Four additional ports Optional Features: |
® Memory system expandoble by | i
adding up to three additional ' o Four additional ports
32K memory units I
- L_:___T_————J
i .
R
ettt ;
MULTIPLEXING INPUT/OUTPUT [MIOP EXPANSION OPTION | {' SELECTOR INPUT/OUTPUT 1|
PROCESSOR (MIOP) 1 {ONE PER MIOP)) H PROCESSOR (SIOP) i
Standard Features: { Standard Features: } i Standard Features: |
e One group of sight subchannels l e One £ eigh | | e Single-byte interface I
8 N group of eight subchannels N
e Single-byte interface | Single-byte int e Four-byte interface }
e Four-byte interface l * ingle-byte interface i : |
Optional Features } Optional Features: I I Accommodates: |
1 3
dditional fei | e 32 device controllers |
o Two additional groups of eight | * Twoadditional groups of eight : (IR |
subchannels | l :
tes:
Accommodates: { Accommodates l }
e One device controller l * Oms;tv;:o colmro!lor l |
per subchannel L per subchanne l"‘—_—__ﬂ
T T —_—— T T | |
—d__ J —le — —_ S
[SINGLE UNIT| TMULTI-UNIT | [SINGLE UNIT] [MULTI-UNIT | {oevice | ibevice |
DEVICE -+ - IDEVICE | DEVICE - +| DEVICE | ICONTROLLER] * * "JCONTROLLER|
CONTROLLER ! CONTROLLER CONTROLLER | CONTROLLER
feonmousr! " [controues] LconTsouss] 1 conmouss] b B it
i L L
o= ~———= il ptgnion I__L——'—-—] Fmme— = e
. O DE
/O DevICE | :"’._V_? Device) Lo pevice) RAR AL 1/ DEVICES| VO DEVICES
l ——— e —y
L ,rvo DEVICE | 'l_ 1 /O DEVICE |
— (Wpto o 1
)6 devicey) | 116 devices) |
| Standard-speed peripheral devices ! I‘— High-speed peripheral devices —
Note: Standard units and p are shown enclosed with solid border lines. Optional units, p device 1

and devices are enclosed with doshed border lines. Standard and optional features within a unit or processor are as listed.

Figure 1. A Typical SIGMA 6 System

General Characteristics

o Call instructions permitting up to 64 dynamically
variable, user-defined instructions, and permitting
a program to gain access to operating system func-
tions without operating system intervention.

o Decimal hardware operations, including arith-
metic, edit, and pack/unpack.

e Push-down stack operations (hardware imple-
mented) of single or multiple words, with auto-
matic limit checking, for dynamic space allocation,
subroutine communication, and recursive routine
capability.

e Automatic conversion operations, including binary/
BCD and any other weighted-number systems.

e An analyze instruction, for facilitating effective
address computation,

e An interpret instruction, for increased speed of
interpretive programs.

o Shift operations (left and right) or word or double-
word, including logical, circular, arithmetic, and
floating=-point modes.

Independently operating input/output system with the
following features:

o Direct input/output of a full word, without the
use of a channel.

e Up to eight input/output processors (10Ps).

e Multiplexor input/output processors (MIOPs) for
simultaneous operation of up to 24 devices per

10P.

e MIOP expansion option for simultaneous operation
of up to 24 additional devices, and includes conflict-
resolving circuitry that allows it to share a memory

bus with an MIOP,

e Selector input/output processors (SIOPs) (8 or 32
bits wide) for data transfer rates approaching 4 mil-
fion bytes per second.

e Up to 32 device controllers can be connected to
each SIOP,

e Both data and command chaining, for gather-read
and scatter-write operations.

e Up to 32,000 output control signals and input test
signals.

External interface feature that:

e Provides an external interface for the attachment of
external equipment to a SIGMA 6 computer via the
Direct 1/O system (Write Direct/Read Direct).

Allows the transfer of a 32-bit data word between
an affected register and an external device. In addi-
tion, a 16-bit address is transferred for selection and
control purposes. Each trarisfer is under direct
program control.

Is used for the attachment of external units to the
direct 1/0 interface. External units may be Xerox
external interrupts, Xerox system interface units,
or nonstandard special equipment.

Comprehensive complement of modular software:

[

Expands in capability and speed as system grows.

Basic system programming support: "Stand-Alone"
Systems and Basic Control Monitor (BCM).

Operating systems: Real-time Batch Monitor
(RBM), Batch Processing Monitor (BPM}, Batch
Time=-Sharing Monitor (BTM), Universal Time-
Sharing System (UTS), and Xerox Operating Sys-
tem (XOS). When larger computing capacity is
required, UTS and XOS users can expand to the
Xerox SIGMA 9 Computer.

Language processors that include: FORTRAN IV-H,
Extended Xerox FORTRAN 1V, Xerox ANS COBOL,
BASIC, FLAG, Symbol, Macro~Symbol, Meta-
Symbol; also, utilities and applications software
for both commercial and scientific users, e.g.,
Data Management System (DMS), Generalized
Sort and Merge, Manage, 1401 Simulator, Func-
tional Mathematical Programming System (FMPS),
FMPS Matrix Generator/Report Writer (GAMMAZ),
Simulation Language (SL-1), General Purpose Dis-
crete Simulation package (GPDS), Circuit
Analysis Systems (CIRC-AC, CIRC-DC), etc.

Standard and special-purpose peripheral equipment
includes:

Ropid Access Data (RAD) files: Capacities to
6.2 million bytes per unit; transfer rates to 3 mil-
lion bytes per second; average access times from
17 milliseconds.

Magnetic tape units: 7-track and 9-track sys-
tems, IBM-compatible; high-speed units operate
at 150 inches per second with transfer rates up
to 120,000 bytes per second; and other units
operate at 37.5 inches per second with transfer
rates up to 20,800 bytes per second and at 75 inches
per second with transfer rates up to 60, 000 bytes
per second.

Displays: Graphic display has standard character
generafor, vector generafor, and close-ups, as

~well as light pen and alphanumeric/function key-

board with o disploy rate of up to 100,000 charac-
ters per second.

General Characteristics 3

e Card equipment: Reading speeds of up to 1500 cards
per minute; punching speeds of up to 300 cards per
minute; intermixed binary and EBCDIC card codes.

e Line printers: Fully buffered, with speeds of up
to 1500 lines per minute; 132 print positions with
64 characters.

o Keyboard/printers: Ten characters per second;
also available with integral paper tape reader
(20 characters per second) and punch (10 charac-
ters per second).

e Paper tape equipment: Readers with speeds of up
to 300 characters per second; punches with speeds
of up to 120 characters per second.

e Graph plotters: Digital incremental, providing
drift-free plotting in two axes in up to 300 steps
per second at speeds from 30 mm to 3 inches per
second.

o Data communications equipment: A complete line
of character- and message~-oriented equipment to
connect remote user terminals to the computer sys-

tem via common carrier lines and local terminals
directly.

STANDARD AND OPTIONAL FEATURES

A basic SIGMA 6 system has the following standard
features:

® A CPU that includes:
e Decimal arithmetic unit
e Memory map with access protection
e Memory write protection
o Watchdog timer
e Two register blocks
e Two real-time clocks
o Power fail~safe
e Memory parity interrupt
e Input/output interrupt
e Control panel interrupt

e External interface (Direct 1/0)
® 32,768 words of main memory with fwo ports

| Multiplexor Input/Output Processor with eight sub-
channels and 4-byte interface feature.

4 Standard and Optional/Real-Time Features

A SIGMA 6 system may have the following optional features:
® Two odditional real-time clocks

® Up to 30 additional register blocks

® Floating-point arithmetic unit

B Up to 224 external priority interrupts

® Up to four additional memory ports

m Up to three additional Multiplexor I/O Processors
(MIOPs)

B Up to two additional groups of eight multiplexor sub-
channels with each MIOP

m MIOP expansion option for each MIOP with 4-byte
interface and one group of eight subchannels

m Selector Input/Output Processor (SIOP) with 4-byte
interface

REAL-TIME FEATURES

Real-time applications are characterized by a need for hard-
ware that providesquick response to an external environment,
enough speed to keep up with the real-time process and suf-
ficient input/output flexibility to handle a variety of data
types at varying speeds. The SIGMA 6 system includes pro-
visions for the following real-time computing features.

Multilevel, True Priority Interrupt System. The real-time
oriented SIGMA 6 system provides for quick response to in-
terrupts by means of up to 224 external interrupt levels. The
source of each interrupt is automatically identified and re-
sponded fo according to its priority. For further flexibility
each level can be individually disarmed (to discontinue ac-
cepting inputs to it) and disabled (to defer responding to it).
Use of the disarm/disable feature makes programmed dynamic
reassignment of prioritiesquick and easy, even while a real-
time process is in progress. In establishing aconfiguration for
the system, each group of 16 interrupt levels can have its
priority assigned in different ways in order to meet the spe-~
cific needs of the problem; the way in which interrupt levels
are programmed is not affected by the priority assignment.

Programs that deal with interrupts from specially designed
equipment sometimes must be checked out before that
equipment is actually available. To permit simulating this
special equipment, any SIGMA 6 interrupt level can be
triggered by the CPU itself through execution of a single
instruction. This capability is also useful in establishing a
hierarchy of responses. For example, in responding to a
high-priority interrupt, after the urgent processing is com-
pleted, it may be desirable to assign o lower priority to the
remaining portion in order to respond to other critical inter-
rupt levels. The interrupt routine can accomplish this by
triggering a lower-priority level, which processes the re-
maining date only after other interrupts have been handled.

Nonstop Operation. When connected to special devices
(on a ready-resume basis), the computer can sometimes
become excessively delayed if the special device does not
respond quickly. A built-in watchdog timer assures that
the SIGMA 6 computer cannot be delayed for an exces-
sive length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
also needed — elapsed time since a givenevent, for example,
or the current time of day. SIGMA 6 can contain two (or
four) real-time clocks with varying degrees of resolution
(1/60 second or 1/8 millisecond, for example) to meet these
needs. These clocks also allow easy handling of separate
time bases and relative time priorities.

Rapid Context Switching. When responding to a new set of
inferrupt-initiated circumstances, a computer system must
preserve the current operating environment, for continuance
later, while setting up the new environment. This changing
of environments must be done quickly, with a minimum of
"overhead" costs in time. In SIGMA 6, each one of up to
32 blocks of general-purpose arithmetic registers can, if
desired, be assigned to a specific environment. All rele-
vant information about the current environment (instruction
address, current general regis*er block, memory-protection
key, etc.) is kept in a 64-bit program status doubleword
(PSD). A single instruction stores the current PSD any~-
where in memory and loads a new one from memory to es-
tablish a new environment, which includes information
identifying a new block of general-purpose registers. A
SIGMA 6 system can thus preserve and change its operating
environment completely through the execution of a single
instruction.

Simultaneous 1/O Channel Operation, The use of a multi-
plexor input/output processor (MIOP) or MIOP expansion
option permits up to 24 channels with standard-speed de-
vices to operate concurrently; the addition of more MIOPs
increases this throughput.

High-Speed Channel Operation. The use of the selector
input/output processor (SIOP) permits very high-speed data
transfer — up to one 32-bit word per memory cycle. To

meet special needs, data size can be 8 or 32 bits wide.

Memory Protection. Both foreground (real-time) and back-
ground programs can be run concurrently in a SIGMA 6
system, because a foreground program is protected against
destruction by an unchecked background program. Mem-
ory write-protection guarantees that protected areas of
memory can be written into only under predefined con-
ditions. Under operating system control, the memory
access-protection feature also prevents accessing of mem-
ory for specified combinations of reading, writing, and
instruction acquisition.

Variable Precision Arithmetic. Much data encountered in
real-time systems are 16 bits or less. To permit this length
of data to be processed efficiently, SIGMA 6 provides half-
word arithmetic operatians in addition to fullword oper-
ations. Doubleword arithmetic operations (for extended
precision) are also included.

Direct Data Input/Output. For handling asynchronous 1/0,
a 32-bit word can be transferred directly to or from a
general-purpose register, so that an 1/O channel need not
be occupied with relatively infrequent transmissions.

Interleave/Overlap. To increase processing speeds, mem-
ory banks overlap cycles automatically wherever possible.
Core memory addresses can be interleaved modulo-2 or
modulo-4 on a bank basis to increase the probability of
overlapping.

GENERAL-PURPOSE FEATURES

General-purpose computing applications are characterized
primarily by an emphasis on computation and internal data
handling. Many operations are performed in floating-point
format and on strings of characters. Other typical charac-
teristics include decimal arithmetic operations, the need to
convert binary numbers into decimal (for printing or display),
and considerable input/output ot standard speeds. The
SIGMA 6 system includes the following general-purpose
computer features.

Floating=Point Hardware (optional). Floating=-point in-
structions are available in both short (32-bit) and long
(64-bit) formats. Under program control, the user can
select optional zero checking, normalization, and signifi-
cance checking (which causes the computer to trap when a
post operation shift of more than two hexadecimal places
occurs in the fraction of a floating-point number). The
significance checking feature permits the use of the short
floating-point format (for high processing speed and storage
economy) and the use of the long format when loss of
significance is detected.

Decimal Arithmetic Hardware. Decimal arithmetic instruc-
tions operate on up to 31 digits plus sign., This instruction
set also includes pack/unpack instructions (for converting to/
from the packed format of two digits per byte) and a general-
ized edit instruction (for zero suppression, check protection,
and formatting byte information with punctuation to displcy
or print it).

Indirect Addressing. This feature provides for simple table
linkages and permits the user to keep data sections of
his program separate from procedure sections for ease of
maintenance.

Displacement Indexing. The technique of indexing by
means of a "floating" displacement permits the user to
access the desired unit of data without the need to con-
sider its size. The index registers automatically align
themselves appropriately; thus, the same index register
can be used on arrays with different data sizes. For ex-
ample, in a matrix multiplication of any array of fullword,
single-precision, fixed-point numbers, the results can be
stored in a second array as double-precision numbers, using
the same index quantity for both arrays. If an index regis-
ter contains the value of k, then the user always accesses
the kth element, whether it is a byte, halfword, word, or
doubleword. Incrementing by various quantities according
to data size is not required; instead, incrementing is always

General-Purpose Features 5

by units in a continuous array table no matter which size
of data element is used.

Powerful Instruction Set. The availability of more than
100 major instructions results in programs that are short,
rapidly assembled, and quickly executed.

Translate Instruction. This instruction permits rapid trans-
lation between any two 8-bit codes (such as EBCDIC to
ANSCII); thus data from a variety of input sources can be
easily handled and reconverted for output.

Conversion Instructions. Two generalized conversion in-
structions provide for bidirectional conversions between

internal binary and any other weighted number system,
including BCD.

Call Instructions. Four instructions permit handling up to
64 user-defined subroutines (as if they were built-in
machine instructions) and gaining access to specified oper-
ating system services without requiring its intervention.

Interpret Instruction. This instruction simplifies and speeds
interpretive operations such as compiling, thus reducing the
space and time requirements for compilers.

Four-Bit Condition Code. This feature simplifies the
checking of results by automatically providing information
on almost every instruction execution (including indicators
for overflow, underflow, zero, minus, and plus, as appro-
priate) without requiring an extra instruction execution.

TIME-SHARING FEATURES

Time=-sharing is the ability of a computer system to share
its resources among many users at the same time. Each
user may perform a different task that requires a different
share of the available resources and, in many instances,
each may be on-line in an interactive ("conversational")
mode with the computer. Other users may enter work to be
batch processed. The SIGMA 6 system provides for the fol~
lowing time=sharing computer features.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched quickly
and easily. Stack-manipulating instructions permit from
one to 16 general-purpose registers to be stored in a push-
down stack by a single instruction — with automatic updating
of stack status information — and to be retrieved {again, by
a single instruction) when needed. The current program
status doubleword (which contains the entire description of
the current user's environment and mode of operation) can
be stored anywhere in memory and a new program status
doubleword loaded, all with a single instruction.

Multiple Register Blocks. The optional availability of up
to 32 blocks of 16 general-purpose registers further improves
response time by reducing the need to store and load regis-
ter blocks. As needed, each user can be assigned a distinct
block; the program status doubleword automatically points
to the currently applicable register block.

6 Time=-Sharing/Multiuse Features

User Protection. The slave mode of operation restricts each
user to his own set of instructions while reserving to the
operating system those instructions that could, if used in-
correctly, destroy another user's prog:.am. A memory acce
protection system prevents any user from accessing storage
areas other than those assigned to him. This access protec=
tion permits the user to access certain areas for reading only,
such as those containing public subroutines, while preventing
him from reading, writing, or accessing instructions in areas
set aside for other users.

Storage Management. SIGMA é memories are available in
seven sizes (from 32,768 to 131,072 words) to provide the ca-
pacity needed, while assuring potential for expansion. To
assure efficient use of available memory, the memory map
hardware permits storing a user's program in fragments (as
small as 512 words) wherever space is available; yet, all
fragments appear as a single, contiguous block of storage at
execution time. The memory map also automatically and
dynamically handles program relocation, so that the pro-
gram appears to be stored in a standard way at execution
time (even though it may actually be stored in a different
set of locations each time it is brought into memory). The
memory map for the full-sized SIGMA 6 memory is provided
no matter how small the actual memory may be. Thus, the
system can always address a virtual memory of 131,072 words
regardless of physical memory size.

Input/Output Capability. Sigma 6 can control up to eight l
input/output processors (of two types) in various combi-
nations. Each multiplexor 1/O processor or MIOP expansiom=—
option can have up to 24 standard-speed 1/O channels op-~
erating simultaneously; selector /O processors can have any
one of up to 32 high-speed 1/O devices operating on each
processor. The 1/O processors operate semi-independently
of the central processor, leaving it free to provide faster
response to overall system needs.

Nonstop Operation. A watchdog timer assures that the
system continues to operate even if certain special 1/O
capabilities are used with special devices that can cause
delays or halts if they fail. Multiple real-time clocks with
varying resolutions permit establishing several independent
time bases, thus allowing flexible allocation of time slices
to each user.

MULTIUSE FEATURES

As implemented in the SIGMA 6 system, "multiuse” com-
bines two or more computer application areas. The most
difficult computing problems are associated with real=-time
applications. Similarly, the most difficult multiuse prob~
lems are associated with time=-sharing applications that
include one or more real-time processes. SIGMA 6 sys-
tem design is especially suited for a mixture of applica-
tions in a multiuse environment. Many of the hardware
features that are required for specific application areas
are equally useful in others, although in different ways.

This multiple capability makes SIGMA 6 particularly effec-
tive for multiuse applications. The major SIGMA 6 multiuse
computer features are:

Priority Interrupt. In a multiuse environment, many ele-
ments operate asynchronously. Thus, a true priority in-
terrupt system is essential. It allows the computer system
to respond quickly (and in proper order) to the many de-
mands made on it, without the high overhead cost of
complicated programming, lengthy execution time, and
extensive storage allocations.

Quick Response. The many features that combine to pro-
duce a quick-response system — multiple register blocks,
quick context saving, push-pull operations — benefit all
users because more of the computer's resources are avail-
able for useful work.

Memory Protection. The memory protection features protect

each user from every other user and also guarantee the
integrity of programs that are essential to critical real-time
applications.

Input/Output. Because of its wide range of capacities
and speeds (with and without channels), the SIGMA 6
1/O system simultaneously satisfies the needs of many

different application areas economically, both in terms of
equipment and of programming.

Instruction Set. The large SIGMA 6 instruction set pro-
vides the computational and data-handling capabilities
required for widely differing application areas; therefore,
each user's program length (thus running time) is decreased
and the speed of obtaining results is increased.

Multiuse Features 7

2. SIGMA 6 SYSTEM ORGANIZATION

The primary elements in a basic SIGMA 6 system — a centrai
processor, core memory, and input/output processor — are
all designed around a central, double bus structure.
Each primary element of the system operates asynchronously
and semi-independently, automatically overlapping the op-
eration of the other elements (when circumstances permit)
for greater speed. The basic configuration can be expanded
merely by increasing the number of core memory units
{up to four), increasing the number of buses (up to six),
increasing the number of input/output processors (up to
eight), or by increasing the number of central processors.

INFORMATION FORMAT

The basic element of SIGMA 6 information is a 32-bit word,
in which the bit positions are numbered from 0 through 31,
as follows:

Word

o1 2 3?4 5 6 713 9 10 11112 13 14 15016 17718 19720 21 227 23124 25 26 27028 29 30 31

A SIGMA & word can be divided into two 16-bit parts
(called halfwords) in which the bit positions are numbered
from 0 through 15, as follows:

—

Halfword 0 Halfword 1

912 3!‘5')7?89!0!”\2!3\4‘50\23[45671891011“213!4!5

A SIGMA 6 word can also be divided into four 8-bit parts
(called bytes) in which the bit positions are numbered from
0 through 7, as follows:

Byte O Byte 1 Byte 2 Byte 3

9 v 2 314 5 6 7 0 V 2 314 5 6 7 0 1 2 314 5 6 7 0 1 2 314 5 6 7

Two SIGMA 6 words can be combined to form a 64-bit
element (called a doubleword) in which the bit positions
are numbered from 0 through 63, as follows:

Most significant word

T T ST T e T W i B e B T B RIH R DR B % OIR T %

Least significant word

32 33 34 35136 37 38 39140 41 42 43144 45 46 47148 49 50 51152 53 54 55156 57 58 59160 61 62 63

Four bits of information can be expressed as a single hexa-
decimal digit. A byte can be expressed as a 2-digit hexa~-
decimal number, a halfword as a 4-digit hexadecimal
number, a word as an 8-digit hexadecimal number, and a
doubleword as a 16~digit hexadecimal number. In this
reference manual, a hexadecimal number is displayed as

a string of hexadecimal digits enclosed by single quotation
marks and preceded by the letter "X". For example, the
binary number 01011010 is expressed hexadecimally as
X'5A",

8 SIGMA 6 System Organization

CORE MEMORY

SIGMA 6 core memory systems use a 32-bit word (four 8-bit
bytes) plus aparity bit as the basic unit of information. All
of memory is directly addressable by the CPU (except for
memory locations 0 through 15) and by the IOPs., The SIGMA6
addressing capability accommodates a maximum memory size
of 131, 072 words (524, 288 bytes). Core memory is modular
and is available inincrements of 16, 384 words (65, 536 bytes).

The main memory for SIGMA 6 is physically organized as a
group of "units". A memory unit is the smallest, logically
complete part of the system. It is the smallest part that
can be logically isolated from the rest of the memory sys-
tem. A memory unit may consist of up to two physical
memory banks. Each memory bank operates independently
and asynchronously with respect to each other. 128K words
of main memory is comprised of four memory units. The
memory is word, halfword, and byte addressable for both
reading and writing. Each memory unit has a set of "ports"
that are common to both banks within the unit; that is,
all ports in a given memory unit give access to the banks
within that unit. The basic system is provided with two
ports, expandable to six.

The memory system has 2-way interleaving capability within
a unit and 4-way interleaving between two adjacent units,
Interleaving increases the probability that a processor can
gain access to a given memory bank without encountering
interference from other processors. A multiple bank system
increases the probability that successive memory accesses
may be overlapped. In combination, these two features
provide the SIGMA 6 system with effective memory cycle
times of a fraction of the individual bank cycle times.

DEDICATED MEMORY LOCATIONS

Memory locations O through 319 are reserved by standard
XDS software for dedicated purposes as shown in Table 1.

INFORMATION BOUNDARIES

SIGMA 6 instructions assume that bytes, halfwords, and
doublewords are located in storage according to the
following boundary conventions:

1. Abyte is located in bit positions 0 through 7, 8
through 15, 16 through 23, or 24 through 31 of a word.

2. A halfword is located in bit positions 0 through 15 or
16 through 31 of a word.

3. A doubleword is located such that bits O through 31 of
the doubleword are contained within an even-numbered
word, and bits 32 through 63 of the same doubleword
must be contained within the next consecutive (odd-
numbered) word.

The various information boundaries are illustrated in Figure 2.

: Doubleword Doubleword :
— i
Word (even address) Word (odd address) Word (even address) Word (odd address) :

1

Halfword 0 Halfword 1 Halfword 0 Halfword 1 Hal fword 0 Hal fword 1 Halfword 0 Halfword 1 :

1

I

po o ey o —— o

Byte 0| Byte 1

Byte 2| Byte 3|Byte 0| Byte 1

Byte 2 |Byte 3|Byte O|Byte 1

Byte 2| Byte 3|Byte 0 |Byte 1|Byte 2 |Byte 3

J

Figure 2.

Table 1. SIGMA 6 Dedicated Memory Locations

Location
Decimal | Hexadecimal [Function
0 0
: . Addresses of general registers
15 F
16 10
. . Reserved for future use
31 1F
gg ;? CPU/1OP communication
34 2.2 Program stored by LOAD
: . switch on the processor panel
41 29
4.2 26 First record read from peri-
. . pheral device during a load
63 3F operation
64 40
. . Traps (see Table 3)
79 4F
80 50
: . Override interrupt levels'
87 57
88 58 ‘
. . Counter interrupt levels
91 58
Zg gg Input/output interrupt levels'
94 5E t
95 5F Reserved for future use
96 60 '
. : External interrupt levels
319 13F
t
See Table 2

Information Boundaries

COMPUTER MODES

The SIGMA 6 computer operates in either the master mode
or the slave mode. The mode of operation is determined
by the state of the master/slave mode control bit in the
arithmetic and control unit.

MASTER MODE

The master mode is the basic operating mode of the
computer. In this mode, all SIGMA 6 instructions are
permissible. It is assumed that there is a resident execu-
tive program (operating in the master mode) that controls
and supports the other programs operating in the master
or slave mode.

SLAVE MODE

The slave mode is the problem-solving mode of the com-
puter. In this mode, "privileged" instructions are pro-
hibited. Privileged instructions are those relating to input/
output and to changes in the basic control state of the com-
puter. All privileged instructions are performed in the
master mode only. Any attempt by a program to execute a
privileged instruction while the computer is in the slave
mode results in a return of control to the resident execu-
tive program.

The master/slave mode control bit can be changed only
when the computer is in the master mode; thus, a slave pro-
gram cannot directly change the computer mode from slave
to master. However, the slave program can gain direct
access to certain executive program operations by means

of call instructions. The operations available through
call instructions are established by the resident execu-
tive program,

CPU FAST MEMORY

Several high-speed integrated circuit memories may be
used in the SIGMA 6 CPU. These memories are cap-
able of delivering information to (or receiving informa-
tion from) the arithmetic and control unit simultaneously
with the operation of core memory. These memories
are not accessible to any other unit in a SIGMA 6
system.

Computer Modes/CPU Fast Memory 9

CENTRAL PROCESSING UNIT formats, indirect addressing and indexing, memory mapping

and protection, overflow and trap conditions, and inter-

This section describes the organization and operation of rupt control. Basically, the SIGMA 6 CPU consists of
the SIGMA 6 central processing unit in terms of informa- a fast memory and an arithmetic and control unit (see
tion processing and program control, instruction and data Figure 3).
CPU FAST MEMORY ARITHMETIC AND CONTROL UNIT
GENERAL REGISTER BLOCK (TYPICAL) INSTRUCTION REGISTER
0 r l D Indirect Address Flag
[}
1 m:l:[m Operation Code Field
1 7
2 General Register Designator
3§ > ndex g:‘D Index Register Designator
4 Registers Reference Address Field
5 CLCLLLLET T
15 a To/From
6 "_-r-’ Core Memory
To/From
7 E > ‘I/O Processorsl
/ Read/Write
8 [— I Direct
Interrupts
? [] Priority Interrupt System Write D |
irect
10 [1 ‘——rl e uirec
n | | PROGRAM STATUS DOUBLEWORD
12 [j) [:D:D Condition Code
o
31-digit e
13 [j »Deci:r?;l [;[D Floating-point Mode Control
A -
| J lac'::;mu D Master/Slave Mode Control
0
15 | | J
0 3 D Memory Map Control
9
WEMORY CONTROL STORAGE Arithmetic Trap Masks
Memory Map 01
[g l ‘-—4 Instruction Address
j=—256 B—bitpogeoddresses——-l HTH““ lH”Jll]
Memory Access Protection h ¥
ORI ——d | e
f=—— 256 2-bit access codes ——-—-—I Interrupt Inhibits
Memory Write Protection 7 3
r l 1 I] Sg ¢ ‘ ED:D; Register Block Pointer
'«——— 256 2-bit write locks ——] ?

Figure 3. SIGMA 6 Central Processing Unit

10 Central Processing Unit

|
|

GENERAL REGISTERS AND REGISTER BLOCK POINTER

A register block is a high-speed memory consisting of six-
teen 32-bit words contained in the basic SIGMA 6 CPU for
general-purpose register usage. A SIGMA 6 contains two
such register blocks (expandable to 32), and a 5-bit control
field (called the register block pointer) in the arithmetic
and control unit selects the block currently available to
a program. The 16 general registers selected by the
register block pointer are referred to as the current register

‘block. The register block pointer can be changed only
‘when the computer is in the master mode; thus, a slave

program cannotf change the register block pointer.

Each general register in a current register block is identified
by a 4-bit code in the range 0000 through 1111 (0 through 15
in decimal, or X'0' through X'F' in hexadecimc| notation).
Any general register can be used as a fixed-point accumu-
lator, ﬂocxfing—poinf accumulator, temporary storage, or can
contain control information such as a data address, count,
pointer, etc. Any (or all) of general registers 1 through 7
can be used as index registers. Registers 12 through 15 are
used as a decimal accumulator that is capable of containing
31decimal digits plus sign. The use of registers 12 through 15
is automatic when a decimal instruction is executed; how-
ever, these registers may be used for other purposes by in-
structions not in the decimal instruction set,

MEMORY CONTROL STORAGE

Three high-speed integrated-circuit memories are avail-
able for storage of a memory map, a set of memory access-
protection codes, and a set of memory write-protection
codes, all of which can be changed only when the computer
is in the master mode.

MEMORY MAP AND ACCESS PROTECTION

The memory map feature includes high-speed memories for
both the memory map and the access-protection codes. Use
of the map is determined by the state of the memory map
control bit in the arithmetic and control unit.

Memory Map. Two terms are essential to a proper under-
standing of the memory mapping concept: virtual address
ond actual address.

A virtual address is a value used by a machine-level pro-
gram fo designate the location of an instruction, the loca-
tion of an element of data, the location of a data address
(indirect address), or to designate an explicit quantity,
such as a count. Normally, virtual addresses are derived
from programmer-supplied labels through an assembly (or
compilation) process followed by a loading process. Virtual
addresses may also be computed during a program's execu-
tion. Thus, virtual addresses include all instruction ad~-
dresses, data addresses, indirect addresses, and addresses
used as counts within a stored program, as well as those
addresses computed by the program.

An actual address is a value used by the CPU 2 access mem -
ory for storage or retrieval of information, as required by the
execution sequence of an instruction. Thus, actual addresses
designate wired-in hardware storage locations.

When the memory map is not in effect in a SIGMA 6 com-
puter, as determined by the memory map control bit, all
virtual address values above 15 are used by the CPU as ac-
tual addresses. Virtual addresses in the range 0 through 15
are always used by the CPU as general register addresses
rather than as core memory addresses. Thus, for example,
if an instruction uses a virtual address of 5 as the address
where a result is to be stored, the result is stored in general
register 5 in the current register block instead of in core
memory location 5.

When the computer is operating with the memory map, vir-
tual addresses in the range 0 through 15 are still used as
general register addresses. However, all virtual addresses
above 15 are transformed into actual addresses, by replacing
the high-order portion of the virtual address with a value ob-
tained from the memory map. The memory map replacement
processisdescribed in the section "Memory Address Control".

Memory Access Protection. When the computer is oper-
ating in the slave mode with the memory map, the access-
protection codes determine whether or not the program may
access instructions from, read from, or write into specific
regions of the virtual address continuum (virtual memory),
If the slave program attempts to access a region of virtual
memory that is so protected, program control is returned to
the executive program. (The access—-protection codes are
described in the section "Memory Address Control".)

MEMORY WRITE PROTECTION

The memory write-protection feature operates independently
of the memory map and access protection. The memory
write~protection feature includes the high-speed memory
for the memory write locks. These locks operate in con-
junction with a 2-bit field, called the write key, in the
arithmetic and control unit. The locks and the key de-
termine whether or not the program (slave or master) may
alter the contents of specific regions of core memory as
accessed by actual addresses. The write key can be changed
only when the computer is in the master mode; thus the cur-
rent write key cannot be changed by o slave program. (The
functions of the locks and key are described in the section
"Memory Address Control".)

INSTRUCTION FORMAT

The normal SIGMA 6 memory -addressing instruction has the
following format:

*

Operation l R X Reference address

0 12 3745 6 718 9 1011112 13 14 15116 177 75 75135 21 22 23124 25 26 27128 29 30 37

* This bit position indicates whether or not in-

direct addressing is to be performed. Indirect
addressing is performed (one level only) if this

Instruction Format 11

bit position contains a 1, and is not performed
if this bit position contains a 0.

Operation This 7-bit field contains the code that desig-
nates the operation to be performed.

R This 4-bit field designates any of the 16 regis-
ters of the current register block as an operand
source, result destination, or both.

X This 3-bit field designates any one of registers
1-7 of the current register block as an index
register. X =0 designates no indexing; hence,
register O cannot be used as an index register.

Reference This 17-bit field contains the initial virtual ad-

address dress of the instruction operand. Although the
contents of this field is always, in itself, a word
address, the reference address field allows any
word, doubleword, left halfword, or leftmost
byte within a word in memory to be directly
addressed. Halfword and byte operations re-
quire additional address bits for halfwords and
bytes that do not begin on a word boundary.
Thus, to address the second halfword of a word,
the X field of the instruction must designate a
register that contains a 1 in its low-order bit
position. To address bytes 1, 2, or 3 of a word,
the X field of the instruction must designate a
register that contains 01, 10, or 11, respec-
tively, in its two low-order bit positions. See
"Indexing and Index Registers" for a more com-
plete description of the SIGMA 6 indexing
process.

Some SIGMA 6 instructionsare of the immediate-addressing
type. The format of these instructions provides for an
operand within the instruction word itself, as shown below.
The functions of the Operation andR fields are identical to
those of the normal instruction format.

0] Operation R Operand

0 1 2 314 56 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

0 This bit position is shown coded with a 0 be-
cause indirect addressing cannot be used with
this type of instruction. If indirect addressing
is attempted, the computer treats the instruc-
tion as a nonexistent instruction.

This field contains an operand that is 20 bits in
length, with negative numbers represented in
two's-complement form,

Operand

There are several methods by which an instruction word
may specify the source of an operand or the destination of
aresult. These methods are explained below.

IMMEDIATE OPERAND

The operation code of an immediate operand instruction
specifies that an operand is to be found in the operand
field (bit positions 12-31) of the instruction word itself,

12 Instruction Format

and not in a general register or core memory location. The
operand field of this type of instruction cannot be modified
by indexing. The following SIGMA & instructions are of
the immediate operand type:

Instruction Name Mnemonic Page
Load Immediate LI 29
Load Conditions and Floating LCFI 32
Control Immediate

Add Immediate Al 36
Multiply Immediate MI 38
Compare Immediate CI 41

The byte string instructions are similar to those of the

‘immediate operand type in that they cannot be modified

by indexing. However, the operand field of these in-
structions contains a byte address displacement (or a byte
oddress) that is a virtual address subject to modification by
the memory map. If an immediate or byte string instruction
is indirectly addressed, it is treated as a nonexistent instruc
tion by the computer.

MEMORY REFERENCE ADDRESSES

Core memory locations 0 through 15 are not accessible to
the programmer because memory addresses 0 through 15 are
reserved as register designators for "register-to-register"
operations. Thus, an instruction can treat any register of
the current register block as if it were a location in core
memory. Furthermore, the register block can be used to
hold an instruction (or a series of up to 16 instructions) for
execution just as if the instruction (or instructions) were in
core memory. The only restriction upon the use of the
register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbered register and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence because the
operation of the instruction in the affected register
would be unpredictable.

In the maximum core memory configuration (131,072 words),
memory addresses "wrap around” with address 0 (general
register 0) being the next consecutive memory address after
X'1FFFF'(131,071). Core memory location 16 follows gen-
eral register 15 as the next location in ascending sequence.

Direct Reference Address. If neither indirect addressing
nor indexing is called for by the instruction, the reference
address field of the instruction is a direct reference address.

Indirect Reference Address. If indirect addressing is called
forby the instruction (a 1 in bit position O of the instruction
word), the reference address field is used to access a word

location that contains the direct reference address in bit

positions 15-31. The direct reference address then re-
places the indirect reference address. Indirect addressing
is limited to one level; only the reference address field of
the indirect word is significant.

Index Reference Address. If indexing is called for by the
instruction (a nonzero value in bit positions 12-14 of the
instruction), the direct reference address is modified by
addition of the displacement value in the general register
(index) called for by the instruction (after scaling the dis-
placement according to the instruction type). This final
reference address value (after indirect addressing, index-
ing, or both) is defined as the effective address of the
instruction. If indirect addressing and indexing are both
called for in an instruction, the index displacement is not
used to modify the indirect reference address, but is used
to modify the direct reference obtained from the loca~
tion pointed to by the indirect reference address. This
method of indexing after indirect addressing is called
postindexing.

Register Address. If any instruction produces a virtual ad-
dress that is a memory reference (i.e., a direct, indirect
or indexed reference address) in the range O through 15,

the CPU does not attempt to read from or write into core
memory. Instead, the 4 low-order bits of the reference

address are used as a general register address, and the gen-
eralregister (of the current register block) corresponding to
this address is used as the operand location or result desti-
nation. Thus, the instruction can use any register in the
current register block as the source of an operand, the loca-
tionofa direct address, or the destination of a result, Such
usage is referred to as a "register-to-register" operation,

Actual Address. An actual address is the address value
actually used by the CPU to access core memory. If the
computer is not operating with the memory map, all virtual
addresses above 15 automatically become actual addresses.
However, if the computer is operating in the memory map
mode, all virtual addresses above 15 are transformed (usua”y
into alternate addresses in a different memory page) by the
memory map, and these then become actual addresses. Vir-
tual addresses below 16 are never transformed by the mem-
ory map and thus always refer to a general register for
a register-to-register operation.

Effective Address. The effective address is defined as the
final virtual address computed for an instruction. The
effective address is usually used as the virtual address of
an operand location or result destination, However, some
instructions do not use the effective address as a location
reference; instead, the effective address is used to control
the operation of the instruction (as in a shift instruction),
to designate the address of an input/output device (as in
an input/output instruction), or to designate a specific
element of the system (as in a READ DIRECT or WRITE
DIRECT instruction).

Effective Location. An effective location is defined to be
the actual Tocation (in core memory or in the current regis-
ter block) that is to receive the result of a memory -
referencing instruction, and isreferred to by means of an effec-
tive address. Because an effective address can be either

an actual address or a virtual address, this definition of an

effective location assumes, where applicable, the trans-
formation of virtual addresses into actual address.

Effective Operand. An effective operand is defined to be
the contents of an actual location (in core memory or in
the current register block) that is to be used as an operand
by a memory-referencing instruction, and is referred to by
means of an effective address. This definition of an ef-
fective operand also presupposes the transformation of vir-
tual address into actual addresses.

ADDRESS MODIFICATION

Indirect Addressing. The 7-bit operation code field of the
SIGMA 6 instruction word format provides for up to 128 in-
struction operation codes, nearly all of which canuse indi-
rect addressing (the exceptions, already mentioned, are the
immediate and byte string instructions). The indirect ad-
dressing operation is limited to one fevel, as called for by
the indirect address bit (bit position 0) of the instruction
word. Indirect addressing does not proceed to further levels,
regardless of the contents of the word location pointed to by
the reference address field of the instruction. Indirect ad-
dressing occurs before indexing; that is, the 17-bit reference
address field of the instruction is used to obtain a word, and
the 17 low-order bits of the word thus obtained effectively
replace the initial reference address field; then, indexing

is carried out according to the operation code of the
instruction.

Indexing and Index Registers. The X field of the normal
instruction format permits any one of registers 1 through 7
in the current register block to be designated as an index
register. The contents of this register are then treated as
a displacement value.

Figure 4 shows how the indexing operation takes place. As
the instruction is brought from memory, it is loaded into a
34-bit instruction register that initially contains 0's in the
two low-order bit positions (32 and 33). The displacement valye
from the index register is then aligned with the instruction
register (as an integer) according to the addressing type of
the instruction. That is; if it is a byte operation, the dis-
placement is lined up so that its low-order bit is aligned
with the least significant bit of the 34-bit instruction regis-
ter. The displacement is shifted one bit to the left of this
position for a halfword operation, two bits to the left for a
word operation, and three bits to the left for a doubleword
operation. An addition process then takes place to develop
a 19-bit address, which is referred to as the effective ad-
dress of the instruction. High-order bits of the 32-bit dis-
placement field are ignored in the development of this
effective address (i. e. ; the 15 high-order bifs are ignored
for word operations, the 25 high-order bits are ignored for
shift operations, and the 16 high-order bits are ignored for
doubleword operations). However, the displacement value
can cause the effective address to be less than the initial
reference address within the instruction if the displacement
value contains a sufficient number of high-order 1's (i. e. ,
if the displacement is o negative integer in two's comple-
ment form).

The effective address of an instruction is always a 19-bitbyte
address value; however, this value is automatically adjusted

Instruction Format 13

(=}

Instruction in memory:

Operation

R X Reference address

T Tz 367

8 9 10 112 13 14 shieT7 8 wim 21 22 2317 B 26 nin 29 30 31

Instruction in instruction register: 0| Operation

R X Reference address 00

Byte operation indexing alignment:

Halfword operation indexing alignment :

Word operation indexing alignment :

Shift operation indexing alignment:

Doubleword operation
indexing alignment:

Effective virtual address:

ot 2 314 5 6 7

B9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3\ I

19-bit displacement value
Z7|za|”l”|3]
18-bit displacement value |0

a—
14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

17-bit displacement value

19-bit virtual address value
ST R RR T R SR s BB B B 2B

Figure 4. Index Displacement Alignment

to the SIGMA 6 information boundary conventions. Thus,
for halfword operations, the low-order bit of the effective
halfword address is 0; for word operations, the two low-order
bits of the effective word address are 0's; and for doubleword
operations, the 3 low-order bits of the effective doubleword
address are O's. :

If no indexing is used with a byte operation, the effective
byte is the first byte (bit positions 0-7) of a word location;
if no indexing is used with a halfword operation, the effec-
tive halfword is the first halfword (bit positions 0-15) of a
word location. A doubleword operation always involves a
word at an even-numbered word address and the word at the
next sequential (odd-numbered) word address. If an odd-
numbered word location is specified for a doubleword oper-
ation, the low-order bit of the effective address field (bit
position 31) is automatically forced to 0. Thus, an odd-
numbered word address (referring to the middle of a double-
word) designates the same doubleword as an even-numbered
word address, when used for a doubleword operation.

MEMORY ADDRESS CONTROL

With a SIGMA 6 compufer,‘ two methods are available for
controlling the use of core memory by a program; they are

14 Memory Address Control

the memory map and the memory write locks. The mem-
ory map provides for dynamic relocatability of programs
and for access protection through inhibitions imposed on
slave mode programs. The memory write locks provide mem-
ory write protection for both master and slavemode programs.

MEMORY MAP AND ACCESS PROTECTION

The memory map can be represented as a series of 256 8-bit
registers, each of which contains an 8-bit actual memory
page address code for a specific 512-word page of virtual
addresses, and a series of 256 2-bit registers, each of which
contains a 2-bit access control code for a specific 512-word
page of virtual addresses. (The access control codes are ap-
plicable only to programs operating in the slave mode with
the memory map.)

The memory page address codes are assigned to pages of vir-
tual addresses as follows:

Memory page X| Memory page K E z Memory page N

Virtual addresses Virtual addresses
X*'200'-X'3FF' X'1FEQQ'-X'1FFFF'
(virtual page 1} (virtual page 255)

Virtual addresses
X'10°-X'1FF!
(virtual page 0)

The access control codes are assigned as follows:

AC | AC}AC | AC | AC AC [AC

T ‘Virtucl addresses Virtual addresses -
X'600'- X'7FF' X'TFEOO'-X'1FFFF!
Virtual addresses (virtual page 255)
X'400'-X"'5FF'
Virtual addresses Virtual addresses
X'200'-X'3FF' X'TFCO00'-X "' IFDFF!
Virtual addresses
X'10'-X"1FF'

(virtual page 0)

The memory page addresses and access control codes can
be changed only by the privileged instruction MOVE
TO MEMORY CONTROL (see "Control Instructions").

When the CPU is operating in the mapping mode, all mem-
ory references used by the program (including instruction ad-
dresses) whether direct, indirect, or indexed, are referred to
as virtual addresses. Virtual addresses in the range 0 through
15 are not used to address core memory; instead, the 4 low-
order bits of the virtual address comprise a general register
address. However, if an instruction produces a virtual ad-
dress greater than 15, the 8 h'gh-order bits of the virtual
address are used to obtain the appropriate memory page ad-
dress and access control codes. For example, if the 8 high-
order bits of the virtual address are 0000 0000, the first page
address code and the first access control code are used; if
the 8 high-order bits of the virtual address are 0000 0001,
the second page address and access control codes are used;
and so on, through the 256th page address and control codes.
Thus, each 512-word page of virtual addresses is associated
with its own memory page address and access control codes.

When the memory map is accessed, the CPU performs a test

to determine whether or not there are any inhibitions on using
the virtual address by a slave program. (If the CPU is in the
master mode, this test is not performed.) The 2-bit access
control code is interpreted as follows:

AC Function

00 The slave program can write into, read from, or access
instructions from this page of virtual addresses.

01 The slave program cannot write into, but can read from
or access instructions from this page of virtual addresses.

10 The slave program cannot write into or access instruc—
tions from, but can read from this page of virtual ad-
dresses.

11 The slave program is denied any access to this page of
virtual addresses.

If the instruction being executed by the slave program fails
this test, the instruction execution is aborted and the com-
puter traps to location X'40', the "nonallowed operation"
trap (see "Trap System").

If the instruction being executed by the slave program passes
this test (or the CPU is in the master mode), the page address

bits in the accessed byte of the memory map replace the 8
high-order bits of the virtual address, to produce the actual
address of the core memory location to be used by the in-
struction.

If the page address bits inthe accessed byte of the memory
map are all 0's, and when combined with 9 low-order bits
of the virtual address, an actual address is produced that
corresponds to a word address in the range 0 through 15,

the corresponding general register in the current register
block is not accessed. In this one particular instance, a
word address in the range 0 through 15 corresponds to actual
core memory locations rather than general registers.

Figure 5 illustrates the address modification and mapping
process for an indirectly addressed, indexed, halfword
operation. As the figure shows, word address 1 is the
contents of the reference address field in the instruction
stored in memory. The instruction is brought into the in-
struction register, and word address 1 (assumed to be greater
than 15) is converted from a virtual address to an actual ad-
dress by the memory map. The 17 low-order bits of the core
memory location pointed to by word address 1, labeled word
address 2, then replaces word address 1 in the instruction reg-
ister. The index register designated in the X field of the in-
struction is then aligned for incrementing at the halfword-
address level, the final virtual (effective) address is formed,
and the effective address (assumed to be greater than 15) is
also transformed, through the memory map. The final 19-
bit core memory address, which automatically contains a
low-order O, is then used to access the halfword to be used
as an operand for the instruction.

MEMORY WRITE LOCKS

The access control bits in the memory map provide access
protection, through inhibitions imposed on slave programs.
However, this protection is only available when the memory
map is in effect, and is only operative with respect to slave
programs. A memory protection feature, independent of the
memory map, is provided by a lock and key technique. A
2-bit write-protect lock (WL) is provided for each 512-
word page of actual core memory addresses. The write-
protect locks consist of 256 2-bit write locks, each as-
signed to a 512-word page of actual addresses as follows:

WL | WL [WL [WL|WwL WL | WL

] 4
Actual addresses Actual addresses
X'600'-X'7FF' X'TFEQQ'-X'1FFFF!
Actual addresses (memory page 255)
X'400'-X'5FF!
Actual addresses Actual addresses
X'200'-X'3FF' X'TFCO0'-X'1FDFF’
Actual addresses

0-X'1FF'
(memory page 0)

The write-protect locks can be changed only by the execu-
tion of the privileged instruction MOVE TO MEMORY CON-
TROL (see Contro!l Instructions).

Memory Address Control 15

Instruction in memory: 1 LH R X Word address 1
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2% 22 23124 25 26 27128 29 30 3°
Instruction in instruction register: 1 LH R X Word address 1
HXXXXK XK YYYYYYYYY 00
o 1 2 3?4 5 6 718 9 10 11112 13 14 151t6 17 18 |ﬁ 1 23124725 26 29 30 31

The 8 high-order bits of the reference address are
replaced with page address Z from memory map:

Actual address of memory location
that contains the direct address:

Direct address in memory:

0 1 2 314 5 6 718 9 10 Nl12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

[N

Page Z
22222272
0 1 2 314 5 &6 7

19-bit actual address
zzzzzzzz | Yyyyyyyyy [00

5116 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Word address 2

Indirect addressing replaces reference 1
address with direct address:

LH

|
R X Word address 2 00

Halfword operation indexing alignment:

Effective virtual address:

The 8 high~order bits of the effective address are
replaced with page address N from memory map:

Final memory address, which is the actual address

0t 2 314 5 6 7

0 1 2 374 5 &6 7718 9 10 101213 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 3!

of

halfword location containing the effective halfword:

8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 2° 26 27128 29 30 31 32 33

18~bit displacement

79-bit virtual halfword address
kkkkkkkk mmmmmmmmm jm0

15116 17 18 19120 21 22 23124,25 26 27128 29 30 31 32 33

Page N
nnnnnnnn
T 7 3t 56 7

19-bit actual halfword address
nanhnnnn | mmmmmmmmm | m 0
15716 17 18 19120 21 22 23124 25 26 27128 29 30 31 32 33

Figure 5.

The write-key (a 2-bit field in the arithmetic and control
unit) works in conjunction with the lock storage to deter-
mine whether or not the program (whether slave or master)
can write into a specific page of core memory locations.
The keys and locks control access for writing, according to
the following rules:

A lock value of 00 means that the corresponding mem-
ory page is "unlocked"; write access to that page is
permitted independent of the key value.

A key value of 00 is a "skeleton" key that will open
any lock; thus, write access to any memory page is
permitted independent of its lock value.

A lock value other than 00 for a memory page permits

write access to that page only if the key value is
identical to the lock value.

16 Memory Address Control

Generation of Actual Memory Addresses

Thus, a program can write into a given memory page if
the lock value is 00, if the key value is 00, or if the key
value matches the lock value.

Note that the memory access protection feature is pro-
vided with the memory map and operates on virtual ad-
dresses, whereas the memory write proctection feature
operates on actual memory addresses. Thus, if the ac-
cess protection feature is invoked (that is, the CPU is
in the slave mode and is using the memory map), theaccess
protection codes are examined at the time the virtual ad-
dress is converted into an actual address. Then, the locks
and keys are examined to determine whether or not the
program (master or slave) is allowed to alter the content:
of the core memory location corresponding to the final
actual address. If an instruction attempts to write into

a write-protected memory page, the computer aborts

the instruction, and traps to location X'40', which is
the "nonaliowed operation" trap (see Trap System).

PROGRAM STATUS DOUBLEWORD

The critical control conditions of the SIGMA 6 CPU can be
defined by 64 bits of information. These 64 bits are
collectively referred to as the current program statusdouble-
word (PSD). The current PSD can be considered as a 64~
bit internal CPU register, although it actually exists as a
collection of separate registers and flip-flops. When stored
in memory, the PSD is always in the following format:

FIF[FIM|M|D|A
G 1 2 314 5 o 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 30
Clt]E
00|wk{Ol1|i|/| 0000 0000 0000 000 RP 0000
37 33 34 35136 37 38 39 140 41 42 43144 45 46 47148 49 50 51152 53 54 55156 57 58 59160 61 62 63

Desig-

nation Function

CcC Condition code. This generalized 4-bit code in-
dicates the nature of the results of an instruction.
The significance of the condition code bits depends
on the particular instruction just executed. After
aninstruction is executed, the instructions BRANCH
ON CONDITIONS SET (BCS) and BRANCH ON
CONDITIONS RESET (BCR) can beused, singly
or in combination, ‘o test for a particular condi-
tion code setting (these instructionsare described
in Chapter 3, "Execute/Branch Instructions").

In some operations, only a portion of the condition
code is involved; thus, the term CC1 referstothe
first bit of the condition code, CC2 to the second .
bit, CC3 to the third bit, and CC4 to the fourth
bit. Any program (slave or master mode) can change
the current value of the condition code by executing
either the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI) or the
instruction LOAD CONDITIONS AND FLOAT-
ING CONTROL (LCF); any program can store
the current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, "Load/Store Instructions".

FS Floating significance mode control

Fz Floating zero mode control

FN Floating normalize mode control

The three floating-point mode bits (FS, FZ, and
FN) control the operation of the computer with
respect to floating-point significance checking,

Desig-

the generation of zero results, and the normaliza-
tion of the results of floating-point additions and
subtractions, respectively. (The floating-point
mode controls are described in Chapter 3, "Float-
ing-point Instructions".) Any program (slave or
master) can change the state of the current floating-
point mode controls by executing either the instruc-
tion LCFI or the instruction LCF; any progrem can
store the current state of the current floating-
point mode controls by executing the instruction

Master/slave mode control. The computer is in
the master mode when this bit is a 0; it is in the
slave mode when this bit is a 1. The master/slave
mode control cannot directly be changed by a slave
program; however, a master mode program can change
the control by executing either the instruction LOAD
PROGRAM STATUS DOUBLEWORD (LPSD) or the in-
struction EXCHANGE PROGRAM STATUS DOUBLE-
WORD (XPSD). These two privileged instructions
are described in Chapter 3, "Control Instructions".

Memory map control. The memory map is in ef-
fect when this bit is a 1; it is not in effect
when this bit is 0. The memory map control
cannot be changed by a slave program. A mas-

‘ter mode program can change the memory map

control by executing either the instruction LPSD
or the instruction XPSD,

Decimal mask. The decimal arithmetic trap (see
"Trap System") is in effect when this bitisa 1;
the trap is not in effect when this bit is a 0. The
conditions that can cause a decimal arithmetic
trap are described in Chapter 3, "Decimal In-
The decimal trap mask cannot be
changed by a slave program; a master mode pro-
gram can change the mask by executing either the
instruction LPSD or the instruction XPSD.

Arithmetic mask. The fixed-point arithmetic over-
flow trap is in effect when this bit is a 1; the trap
is not in effect when this bit is a 0. The instruc-
tions that can cause fixed-point overflow are
described inthe section "Trap System". The arith-
metic trap mask cannot be changed by a slave program;
a master mode program can change the mask by exe~
cuting either the instruction LPSD or the instruction

Instruction address. This 17-bit field contains the
virtual address of the next instruction to be executed.

nation Function
STCF.
MS
MM
DM
structions".
AM
XPSD.
1A
WK

Write key. This field contains the 2-bit key used
in conjunction with the memory protection fea~" i
ture. A siave program cannot change the cur-
rent write key; a master mode program can change
the write key by executing either the instruction
LPSD or the instruction XPSD.

Program Status Doubleword 17

Desig-
nation Function

CI Counter interrupt group inhibit.
1 Input/output interrupt group inhibit.
| EI External interrupt group inhibit.

The three inhibit bits (CI, II, and EI) determine
whether an interrupt can occur. The functions of
the interrupt inhibits are described in the section
“Interrupt System". Aslave program cannot change
the state of the interrupt inhibits; a master mode
program can change the interrupt inhibits by exe-
cuting LPSD, XPSD, or the instruction WRITE DI-
RECT (WD). The WD instruction is described in
Chapter 3, "Control Instructions".

RP Register pointer. This 5-bit field selects one of
the 32 possible blocks of general -purpose registers
as the current register block. A slave program
cannot change the register pointer; a master mode
program can change the register pointer by exe-
cuting LPSD, XPSD, or the instruction LOAD REG -
ISTER POINTER (LRP). The LRP instruction is de-
scribed in Chapter 3, "Control Instructions".

INTERRUPT SYSTEM

The SIGMA 6 priority interrupt system is an improved ver-
sion of the system used successfully in XDS 900,/9300 series
computers. Up to 237 external and internal interrupt levels
are normally available, each with a unique location (see
Table 2) assigned in core memory, each with a unique pri-
ority, and (except for the Power on and Power off interrupt
levels) each capable of being selectively armed and/or
enabled by the CPU. Also, any interrupt level can be
“triggered” by the CPU (supplied with a signal at the same
physical point where the signal from the external source
would enter the interrupt level). The triggering of an inter-
rupt permits the testing of special systems programs before
the special systems equipment is actually attached to the
computer, and also permits an interrupt-servicingroutine to
defer a portion of the processing associated with an inter-
rupt level by processing the urgent portion of an interrupt-
servicing routine, triggering a lower-priority level (for a
routine that handles the less-urgent part), then clearing the
high-priority interrupt level so that other interrupts may be
processed before the deferred interrupt.

SIGMA 6 interrupt levels are arranged in groups that are con-
nected in a predetermined priority chain by groups of levels.
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low-
est. The user has the option of ordering a machine with a
priority chain starting with the override group and con-
necting all remaining groups in any sequence. This allows
the user to establish external interrupts above, between, or
below the counter and input/output groups of internal in-
terrupts, Figure 6 illustrates this with a configuration that
a typical user might establish; where (after the override
group) the counter group of internal interrupts is given

18 Interrupt System

the second-highest priority, followed by the first group of ex-
ternal interrupts, then the input/output group of internal inter-
rupts, and finally all succeeding groups of external interrupts.

Ist Priority 2nd Priority

Override
Interrupts

Counter
Interrupts

3rd Priority

- External Interrupts Group 2

4th Priority

_ |Tnput/Output
Interrupts

5th Priority

External Interrupts Group 3 -

Figure 6. Typical Interrupt Priority Chain

INTERNAL INTERRUPTS

The three groups of internal interrupts include standard
interrupts that are normally supplied with o SIGMA 6
system, as well as power fail-safe and the additional |
counter interrupts.

OVERRIDE GROUP (Locations X'50' to X'56')

This group of seven interrupt levels always has the high-
est priority in a SIGMA 6 system. The power fail-safe
feature includes the Power on and Power off interrupt
levels. A system can have two or four count-pulse inter-
rupt levels that are triggered by pulses from clock sources.
Counter 4 has a constant frequency of 500 Hz; counters 1,
2, and 3 can be individually set to any of five manually
switchable frequencies — the commercial line frequency,
500 Hz, 2 kHz, 8 kHz, and a user-supplied external sig-
nal — that may be different for each counter. (All counter
frequencies are synchronous except for the line frequency
and the signal supplied by the user.) Each of the count-
pulse interrupt locations must contain one of the modify and
test instructions (MTB, MTH, or MTW). Counter 4 uses the
mapped location if map is currently invoked in the PSD,
The results of any other instruction are unpredictable when
the instruction is executed as the result of a count-pulse
interrupt level advancing to the active state. When the l
modification (of the effective byte, halfword, or word)
causes a zero result, the appropriate counter-equals-zero
interrupt (see "Counter-Equals-Zero Group") is triggered.
The override group also includes a memory parity interrupt
level thet is triggered whenever a memory parity error is
reported to the CPU.,

Table 2. SIGMA 6 Interrupt Locations

Location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex. Register bitf Function Availability Inhibit Group code'f
80 50 none Power on''t tandard none
81 51 Power offttt standa
82 52 16 Counter 1 count pulse optional
83 353 17 Counter 2 count pulse (as a set) none
84 54 18 Counter 3 count pulse
85 55 19 Counter 4 count pulse standard
86 56 20 Memory Parity
87 57 Reserved for future use
88 58 22 Counter 1 zero optional X'0*
89 59 23 Counter 2 zero (as a set) cl
920 5A 24 Counter 3 zero standard
91 5B 25 Counter 4 zero
92 5C 26 Input/Output standard 1
93 5D 27 Control Panel
94 5E Reserved for future use
95 5F Reserved for future use
96 60 16
External Group 2 X'2'
111 6F 31
112 70 16
External Group 3 X'3!
127 7F 31
optional EI .
288 120 16
External Group 14 X'E!
303 12F 31
304 130 16
External Group 15 X'F!
319 13F 31
"When the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds to the various interrupt levels. .
”The numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.
f“'These interrupts can not be disarmed, disabled, nor inhibited.

COUNTER-EQUALS-ZERO GROUP
(Locations X'58' to X'5B')

Each interrupt level in the counter-equals-zero group (called

a counter-equals~zero interrupt) is associated with a count-
pulse interrupt in the override group. When the execution of
a modify and test instruction in the count-pulse interrupt lo-
cation causes a zero result in the effective byte, halfword, or
word location, the corresponding counter-equals-zero inter-
rupt is triggered. The counter~equals-zero interrupts can be

‘inhibited or permitted asa group. If bit position 37 (CI) of the

current program status doubleword contains a 0, the counter-
equals-zero interrupts are allowed to interrupt the program be -
ing executed. However, if the ClI bit is a 1, the counter-

equals-zero interrupts are not allowed to interrupt the program,

INPUT/OUTPUT GROUP (Locations X'5C* and X'5D")

This inferrupt group includes two standard interrupts: the /0
interrupt and the control panel interrupt. The 1/O interrupt

Interrupt System 19

level accepts interrupt signals from the standard 1/O
system. The 1/O interrupt location is assumed to contain
an EXCHANGE PROGRAM STATUS DOUBLEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all 1/O interrupts. The 1/O routine then contains
an ACKNOWLEDGE 1/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the INTER-
RUPT buttons on the processor control panel. The control
panel interrupt level can thus be triggered by the computer
operator, allowing him to initiate a specific routine.

The interrupts in the input/output group can be inhibited or
permitted by means of bit position 38 (II) of the program
status doubleword. If Il is a O, the interrupts in the 1/O
group are allowed to interrupt the program being executed.
However, if the Il bit is a 1, the interrupts are inhibited
from interrupting the program,

POWER FAIL-SAFE FEATURE

The two power fail-safe interrupt levels, which cannot be
disabled, disarmed, or inhibited, are used to enter routines
that save and restore volatile information (e. g., registers,
interrupt environment, etc.)in case of primary power failure.
When primary voltage dropsbelow safe limits, the power off
interrupt is triggered. Typically, a power off routine stores
volatile information in main memory to facilitate recovery,
halts all 1/O operations, and ends in awaitingstate. When
primary power returns to safe limits, the power on interrupt
is triggered. Typically, a power on routine restores infor-
mation from main memory and prepares to resume processing.
(Note: When power is restored, software timeouts for 1/0O
operations may occur.) Because the power on interrupt has
a higher priority than the power off interrupt (see Table 2),
a power failure cannot interrupt a power on routine before
the system is restored to a predictable state (registers
restored, etc.). Since main frame power supplies maintain
voltages for five milliseconds after detecting an imminent
power failure, the total time of the power on and power off
routines must be less than five milliseconds.

EXTERNAL INTERRUPTS

A SIGMA 6 system can contain up te 14 groups of optional
interrupt levels, with 16 levels in each group. Asshown in
Figure 6, the groups can be connected in any priority sequence.

All external interrupts can be inhibited or permitted by means
of bit position 39 (EI) of the program status doubleword. If
EI is a 0, external interrupts are allowed to interrupt the
program; however, if EI is a 1, all external interrupts are
inhibited from interrupting the program.

STATES OF AN INTERRUPT LEVEL

A SIGMA 6 interrupt level is mechanized by means of three
flip-flops. Two of the flip-flops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.
The various states and the conditions causing them to change
state (see Figure 7) are described in the following paragraphs.

DISARMED

When an interrupt level is in the disarmed state, no signal
to that inferrupt level is admitted; that is, no record is re-
tained of the existence of the signal, nor is any program
interrupt caused by it at any time.

ARMED
When an interrupt level is in the armed state, it can accept

and remember an interrupt signal. The receipt of such a sig-
nal advances the interrupt level to the waiting state.

WAITING

When an interrupt level in the armed state receives an in-
terrupt signal, it advances to the waiting state, and remains

Active, waiting, or fr=——————— ————— —
[Ex te:nul O— disarmed state 1 Disabled state :
npu | H
1 Remember '
Trigger Armed state : interrupt Enabled state :
(0 o ———
Input : i
e I WAITING STATE :
l |
i Group n 1
] inhibit = 1 :
] on
: off _ Highest . 'cpu) A
L 0 .
1 G | interrupt ? fnferrup [} state
roup n h
! inhibit = 0 H
[} 1
| S, _———————— e —————— e o i e I
Note: The armed, disarmed, waiting, and active states are controlled by two flip-flops and the enabled/disabled| states are controlled by
—_ ’ 9 Y p-tiop:
the level-enable flip~flop.

Figure 7.

20 Interrupt System

Operational States of an Interrupt Level

in the waiting state until it is allowed to advance to the
active state. If the level-enable flip-flop is off, the in-
terrupt level can undergo all state changes except that of
moving from the waiting to the active state. Furthermore,
if this flip-flop is off, the interrupt level is completely re-
moved from the chain that determines the priority of access
to the CPU. Thus, an interrupt level in the waiting state
with its level-enable in the off condition does not prevent
an enabled, waiting interrupt of lower priority from moving
to the active state.

When an interrupt level is in the waiting state, the follow-
ing conditions must all exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i.e., its level-enable flip-
flop must be set to 1).

2. The CPU must be at an interruptible point in the exe-
cution of a program.

3. The group inhibit (CI, 11, or El, if applicable) must be
a 0.

4. No higher-priority interrupt level is in the active state
or is in the waiting sto*e and totally enabled (i. e.,
enabled and not inhibited).

ACTIVE

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com~-
puter, which then executes the contents of the assigned in-
terrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged until the instruction in the interrupt location is
executed,

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW. If the execution of
any other instruction in an interrupt location attempted as
the result of an interrupt level advancing to the active
state, the results of the instruction are unpredictable,

The use of the privileged instruction XPSD in an interrupt
location permits an interrupt-servicing routine to save the
entire current machine environment and establish a new
environment. If working registers are needed by the
routine and additional register blocks are available, the
contents of the current register block can be saved auto-
matically with no time loss. This is accomplished by chang-
ing the value of the register pointer, which results in the
assignment of a new block of 16 registers to the routine.

An interrupt level remains in the active state until it is
cleared (removed from the active state) by the execution
of the LPSD instruction or the WD instruction. An interrupt-
servicing routine can itself be interrupted whenever a
higher-priority interrupt level meets all of the condi-
tions for becoming active; and then continued after the
higher-priority interrupt is cleared. However, an

interrupt-servicing routine cannot be interrupted by a
lower=priority interrupt as long as it remains in the active
state. Normally, the interrupt servicing routine clears its
interrupt and transfers program control back to the point of
interrupt by means of an LPSD instruction with the same
effective address as the XPSD instruction in the interrupt
location,

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 6 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm, enable, disable, or trigger any interrupt level ex-
cept for the power fail-safe interrupts (which are always
armed, always enabled, and cannot be triggered).

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, 11, and EI)in the program status
doubleword. If an interrupt inhibit is set to 1, all interrupt
levels in the corresponding group are effectively disabled;
i.e., no interrupt in the group may advance from the wait-
ing state to the active state and the group is removed from
the interrupt recognition priority chain. Thus, a waiting,
enabled interrupt level (in a group that is not inhibited) is
not prevented from interrupting the program by a higher-
priority,- waiting, enabled interrupt level in a group that is
inhibited. However, if an interrupt group is inhibited while
a level in that group is in the active state, no lower-priority
interrupt level may advance to the active state.

TIME OF INTERRUPT OCCURRENCES

The SIGMA 6 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) providing the control panel COMPUTE switch
is in the RUN position and no "halt" condition exists:

1. Between instructions: An interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

2. Between the initiation of an instruction and memory or
register modification: For some instructions, an interrupt
ispermitted after an instruction has been in process and
uptothe point in time when amemory location or a general
register ismodified. If on interrupt occurs during thistime
interval, the instruction is aborted, the instruction address
portion of the program status doubleword remains pointing
tothe interrupted instruction, and the instruction inthe in-
terrupt location isexecuted, After the interrupt-servicing
routine has been processed, program control isreturned to
the interrupted instruction, and the interrupted instruction
isthenreinitialized. Most instructions have such a short
execution time that they are not abortable by an interrupt;
thus, an interrupt normally occurs only before or after an
instruction execution.

Interrupt System 21

3. Between instruction iterations: An interrupt is also
permitted to occur during the execution of the follow-
ing multiple-operand instructions:

Move Byte String (MBS)

Compare Byte String (CBS)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)
Edit Byte String (EBS)

Decimal Multiply (DM)

Decimal Divide (DD)

Move to Memory Control (MMC)

The control and intermediate results of these instructions re-
side in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper-
and execution cycle) and the point in time (during the next
iteration) when a memory location or register is modified.

If an interrupt occurs during this time, the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupted instruc-
tion, After the interrupt-servicing routine is completed, the
instruction continues from the point at which it was inter-
rupted and does not begin anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt is asituation where an interrupt
level isactivated, the current program is interrupted, the single-
instruction inthe interrupt location is executed, the interrupt
level is automatically cleared and armed, and the interrupted
program continues without being disturbed or delayed (except

for the time required for the single-instruction).

If any of the following instructions is executed in any in-
terrupt location, then that interrupt automatically becomes
a single-instruction interrupt.

Instruction Name Mnemonic
Modify and Test Byte MTB
Modify and Test Halfword MTH
Modify and Test Word MTW

The modify and test instruction modifies the effective byte,
halfword, or word (as described in the section "Fixed-point
Arithmetic Instructions") but the current condition code re-
mains unchanged (even if overflow occurs). The effective
address of a modify and test instruction in an interrupt loca-
tion (except counter 4) is always treated as an actual
address, regardless of whether or not the memory map is
currently being used. Counter 4 uses the mapped location if
map is currently invoked in the PSD. The execution of a
modify and testinstruction in an interrupt location, including
mapped and unmapped counter 4, is independent of the
memory access protection codes and the write-protection
locks; thus, a memory protection violation trap cannot
occur (a nonexistent memory address will cause an unpre-
dictable operation). Also, the fixed-point overflow trap
cannot occur as the result of overflow caused by executing
MTH or MTW in an interrupt location.

The execution of a modify and test instruction inan interrupt

location automatically clears and arms the corresponding in-
terrupt level, allowing the interrupted program to continue.

22 Trap System

When a modify and test instruction is executed in a count-.
pulse interrupt location, all of the above conditions apply
in addition to the following: If the resultant value in the
effective location is zero, the corresponding counter-
equals-zero interrupt is triggered.

TRAP SYSTEM

When a condition that is to result in an interrupt is
sensed, a signal is sent to an interrupt level, If that
level is "armed" it advances to the waiting state. When
all of the conditions for its acknowledgment have been
achieved, the interrupt level eventually advances to the
active state, where it finally causes the computer to take
an instruction from a specific location in memory. The com-
puter may execute many instructions between the time that
the interrupt requesting condition is sensed and the time that
the actual interrupt acknowledgment occurs. However, de~
tecting any of the conditions listed in Table 3 results in o
trap (the immediate execution of the instruction in a unique
location in memory).

When a trap condition occurs, the CPU sets the trapstate. De-
pending on the type of trap, the instruction currently being exe-
cuted by the CPU may or may not be carried to completion. In
any event, the instruction is terminated with a trap sequence.,
In this sequence, the instruction address (1A) portion of the
program status doubleword (PSD), which has already been
incremented by 1, is decremented by 1 and then the instruc
tion in the location associated with the trap is executed.

An interrupt acknowledgment carinot occur until the execu-
tion of the instruction in the trap location is completed. The
instruction in the trap location must be an XPSD instruction;
if the execution of any other instruction in a trap location

| is attempted as the result of a trap activation, the results of

E the instruction are unpredictable. The detailed operation of

{ XPSD is described in Chapter 3, "Control Instructions".

i

|
\
i
i
i

The XPSD instruction in a trap location is accessed without
using the memory map, regardless of whether or not the mem-
ory map is in effect when the trap condition occurs. Also,
no memory protection violation or privileged instruction
violation can occur as a result of either accessing or exe-
cuting an XPSD instruction in a trap location. Table 3
summarizes the description of the trap system.

NONALLOWED OPERATION TRAP

The occurrence of one of the nonallowed operations always
causes the computer to abort the instruction being exe-

cuted (af the time that the nonallowed operation is detected)
and to immediately execute the instruction in trap location

X'40',

NONEXISTENT INSTRUCTION

Any instruction that is neither standard nor optional on
SIGMA 6 is defined as nonexistent (this includes immediate
addressing instructions that are indirectly addressed). If
execution of a nonexistent instruction is attempted, the
computer traps to location X'40' at the time the instruction
is decoded. The operation of the XPSD instruction in trap

Table 3. Summary of SIGMA 6 Trap System
Location PSD
Dec. | Hex. | Function Mask Bit | Time of Occurrence Special Action During XPSD
64 |40 Nonallowed operation none
1. Nonexistent instruction Instruction decoding Set CC1 after new CC is
loaded from memory. If bit
9 of XPSD is 1, add 8 to
the new instruction address
value loaded from memory. -
2. Nonexistent memory Prior to memory access Set CC2 after new CC is
address loaded from memory. If bit
9 of XPSD is 1, add 4 to
the new instruction address
value loaded from memory.
3. Privileged instruction Instruction decoding Set CC3 after new CC is
in slave mode loaded from memory. If bit
9 of XPSD is 1, add 2 to
the new instruction address
value looded from memory.
4. Memory protection Prior to memory access Set CC4 after new CC is loaded
from memory. If bit 9 of XPSD is
1, add 1 to the new instruction
address value loaded from memory.
65 141 Unimplemented instruction | none Instruction decoding none
66 | 42 Push-down stack limit W, TSt At the time of stack limit none
reached detection
67 |43 Fixed-point arithmetic AM For all instructions except DW | none
overflow and DH, trap occurs after com-
pletion of instruction. For DW
and DH, instruction is aborted
with memory, registers, CC1,
CC38, CC4 unchanged.
68 | 44 Floating-point fault
1. Characteristic overflow | none At time of fault detection; the | none
2. Divide b condition code is set to indi-
- Ltvide by zero none cate the reason for the trap
3. Significance check FS, FZ,
FN
69 |45 Decimal arithmetic fault DM At time of fault detection; the | none
condition code is set to indi-
cate the reason for the trap
70 |46 Watchdog timer runout none At time of runout none
72 |48 CALL1 none Instruction decoding The R field of the CALL instruc-
. i tion is ORed into new CC set-
73 |49 CALL 2 none Instruction decoding .
tings loaded from memory. If
74 | 4A CALL 3 none Instruction decoding bit 9 of XPSD is 1, theR field
CA LL4‘ Instruction decodin of the CALL instruction is ad-
75 |48 none struction decoding ded to the new instruction ad-
76 | AC dress value loaded from memory.
Reserved
79 | 4F

"The TW and TS mask bits are contained within the stack pointer doubleword for each push-down stack.

Trap System 23

location X'40' (with respect to the condition code and
instruction address portions of the PSD) is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction exe-~
cuted immediately prior to the nonexistent instruction.

2. Load the new PSD. The current PSD is replaced by the
contents of the doubleword location following the double-
word location in which the current PSD was stored.

3. Modify the new PSD:

a. Set CClto 1 (CC2, CC3, and CC4 remain set at
the values loaded from memory).

b. Ifbit position 9 of XPSD containsa 1, the instruction
address loaded from memory is incrementedby 8. If
bit position 9 of XPSD contains a0, the instruction
address remains at the value loaded from memory.

NONEXISTENT MEMORY ADDRESS

Any attempt to access a nonexistent memory address causes a
trap to location X'40' at the time of the request for memory
service. A nonexistent memory address condition is detected
by memory on the basis of the actual address presented to it,
If the CPU is currently using the memory map, the virtual ad-
dress will already have been modified by the memory map to
generate an actual (but nonexistent) address. The operation
of XPSD in trap location X'40' is as follows:

1. Store the current PSD.
2. Load the new PSD.
3. Modify the new PSD:

a. Set CC2to 1 (CCI1, CC3, and CC4 remain set at
the values loaded from memory).

b. Ifbit position 9 of XPSD containsa 1, the instruction
address loaded from memory isincremented by 4. If
bit position 9 of XPSD contains a0, the instruction
address remains at the value loaded from memory,

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privileged instruction while the
CPU is in the slave mode causes a trap to location X'40' at
the time of instruction decoding. The operation of XPSD
in trap location X'40' is as follows:

1. Store the current PSD.
2. Load the new PSD.
3. Modify the new PSD.

a. Set CC3 to 1 (CC1, CC2, and CC4 remain at the

values loaded from memory).

b. If bit position 9 of XPSD contains a 1, the instruc-
tion address loaded from memory is incremented
by 2. If bit position 9 of XPSD contains a 0, the
instruction address remains at the value loaded
from memory.

24 Trap System

The operation codes, 0C, 0D, 2C, 2D, and their indirectly
addressed forms, 8C, 8D, AC, AD, are both nonexistent
and privileged. If one of these operation codes is used |
while the CPU is in the slave state, both CC1 and CC3 will
be set to 1's after the new PSD has been loaded, and if bit
position 9 of XPSD contains a 1, the instruction address
loaded from memory is incremented by 10.

MEMORY PROTECTION VIOLATION

A memory protection violation can occur either because of

a memory map access control bit violation (by a slave pro-
gram using the memory map) or because of a memory
write lock violation (by either a slave or a master mode
program). When either memory protection violation occurs,
the CPU aborts execution of the current instruction (with-
out changing protected memory) and traps to location X'40'.
The operation of the XPSD in trap location X'40' is as
follows:

1. Store the current PSD,
2. load the current PSD,
3. Modify the new PSD:

a. SetCC4to 1 (CCl, CC2, and CC3 remain at the

values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the instruc;
tion address loaded from memory is incremented
by 1. If bit position 9 of XPSD contains a 0, the
instruction address remains at the value loaded
from memory.

An attempt to access a memory location that is both pro-
tected and nonexistent causes both CC2 and CC4 to be set
to 1's after the new PSD has been loaded, and if bit posi-
tion 2 of XPSD contains a 1, the instruction address |oaded
from memory is incremented by 5.

UNIMPLEMENTED INSTRUCTION TRAP

There is one SIGMA 6 optional instruction group. This is
the floating-point option.

The floating-point option includes the following instructions:

Instruction Name Mnemonic Operation Code
Floating Add Short FAS X'3D
Floating Add Long FAL X'1D
Floating Subtract Short FSS X'3c
Floating Subtract Long FSL xc
Floating Multiply Short FMS X'3F'
Floating Multiply Long FML X'1F'
Floating Divide Short FDS X'3E!
Floating Divide Long FDL X'1E!

If an attempt is made to execute an instruction (directly or
indirectly addressed) in this group when the floating-point
option is not implemented, the computer traps to location
X'41'. The operation of the XPSD in trap location X'47'
is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction imme-
diately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in-

struction address portions of the PSD remain at the
valves loaded from memory.

PUSH-DOWN STACK LIMIT TRAP

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Instruction Name Mnemonic

Push Word PSW
Pull Word | PLW
Push Multiple PSM
Pull Multiple PLM
Modify Stack Pointer MSP

During the execution of any stack-manipulating instruction
(see Push-down Instructions) the stack is either pushed
{words added to stack) or pulled (words removed from
stack). In either case, the space count and word count
fields of the stack pointer doubleword are tested prior
fo moving any words. If execution of the instruction
would cause the space count to become less than 0 or
greater than 215-1, the instruction is aborted with mem-
ory and registers unchanged; then, if bit 32 (TS) of the
stack pointer doubleword is 0, the CPU traps to loca-
tion X'42'. If execution of the instruction would cause
the word count to become less than 0 or greater than
215-1, the instruction is aborted with memory and registers
unchanged; then, if bit 48 (TW) of the stack pointer
doubleword is a 0, the CPU traps to location X'42'. If
trapping does occur, the condition code remains at the
value it had immediately prior to the instruction that caused
the trap. When trapping is inhibited, either CC1 or CC3
is set to 1 (or both CC1 and CC3 are set to 1's) to indicate
the reason for aborting the instruction. The stack pointer
doubleword, memory, and registers are modified only if the
instruction is successfully executed. The execution of
XPSD in trap location X'42' is as follows:

1. Store the current PSD. The condition code stored s
that which existed immediately prior to the execution
of the aborted push-down instruction.

2. Load the new PSD." The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

FIXED-POINT OVERFLOW TRAP

Fixed-point overflow can occur for any of the following
instructions: ’

Instruction Name Mnemonic
Load Complement Word LCwW
Load Absolute Word LAW
Load Complement Doubleword LCD
Load Absolute Doubleword LAD
Add Immediate Al
Add Halfword AH
Add Word AW
Add Doubleword AD
Subtract Halfword SH
Subtract Word N
Subtract Doublword SD
Divide Halfword DH
Divide Word DW
Add Word to Memory AWM
Modify and Test Halfword MTH
Modify and Test Word MTW

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to completion, CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, -, or +) after overflow.
If the fixed-point arithmetic trap mask (bit 11 of PSD) is q
1, the CPU traps to location X'43' instead of executing the
next instruction in sequence.

For DW and DH, the instruction execution is aborted with-
out changing any registers and CC2 is set to 1; but CC1,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU traps
to location X'43' instead of executing the next instruction
in sequence.

1. Store the current PSD, If the instruction causing the
frap was an instruction other than DW or DH, the

stored condition code! is interpreted as fol lows:

ccitt E:_? C_Cl} g Meaning

- 1 0 0 result after overflow is zero

- 1 0 1 result after overflow is
negative

- 1 1 0 result after overflow is
positive

0 - - - no carry from bit position 0

1 - - - carry from bit position 0

tA hyphen (-) indicates that the condition code bit is not
affected by the condition given under the "Meaning"
heading.

HCC] remains unchanged for the instructions LCW, LAW,
LCD, and LAD.

Trap System 25

If the instruction causing the trap was DW or DH, the
stored condition code is interpreted as follows:

CCl CC2 CC3 cc4 Meaning

- 1 - - overflow

2. Load the new PSD. The condition code and instruc-
tion address portions of the PSD remain at the value
loaded from memory.

FLOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera-
tion called for by the instruction code is performed, but be-
fore any results are actually loaded into the general registers;
thus, the floating-point operation that causes an arithmetic
fault is not carried to completion (in the sense that the orig-
inal contents of the general registers remain unchanged).
Instead, the computer traps to location X'44' with the cur-
rent condition code indicating the reason for the trap. A
characteristic overflow or an attempt to divide by zero al-
ways results in a trap condition; a significance check or a
characteristic underflow result in a trap condition only if
the floating—-point mode controls (FS, FZ, and FN) in the
program status doubleword are set to the appropriate state.

If a floating-point instruction causes a trap, the execution
of XPSD in trap location X'44' is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as fol lows:

CCl CC2 CC3 cc4 eaning

—_—— —— . T3

divide by zero

characteristic overflow, neg-
ative result

characteristic overflow, posi-
tive result

If none of the above conditions occurs, but character~
istic underflow occurs with the floating zero (FZ) mode
bit set to 1, the stored condition code is interpreted
as follows:

CCl CC2 CC3 cc4 Meaning

characteristic underflow, neg-
ative result

characteristic underflow, posi-
tive result

If none of the above conditions occurs, but an addition
or subtraction results in either a zero result (with

26 Trap System

FS=1and FN =0), or o postnormalization shift of m
more than two hexadecimal places (with FS = 1 and
FN =0), the stored condition code is interpreted as
follows:

CCl CC2 CC3 CC4 Meaning
1 0] 0 0

zero result of addition or
subtraction

more than 2 postnormalizing
shifts, negative result

more than 2 postnormalizing
shifts, positive result

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

DECIMAL ARITHMETIC FAULT TRAP

When either of two decimal fault conditions occur (see
Decimal Instructions), the normal sequencing of instruction
execution is halted, CC1 and CC2 are set according to the
reason for the fault condition, and CC3, cc4, memory, and
the decimal accumulator remain unchanged by the instruc-
tion. If the decimal arithmetic trap mask (bit position 10
of PSD) is a 0, the instruction execution sequence continues
with the next instruction (in sequence) at the time of fault
detection; however, if the decimal arithmetic trap mask bit
isa 1, the computer traps to location X'45' at the time of
fault detection.

The execution of XPSD in trap location X'45' is as follows:

1. Store the current PSD. The stored condition code is
interpreted as follows:

CCl CC2 CC3 CC4 Meaning
0 1 - -

all digits legal and overflow

1 0

- illegal digit detected

2. Load the new PSD. The condition code and instruction
“address portions of the PSD remain at the values loaded
from memory.

WATCHDOG TIMER RUNOUT TRAP

The instruction watchdog timer insures that the CPU must
periodically reach interruptible points of operation in the
execution of instructions. An interruptible point is a time
during the execution of a program when an interrupt request
(if present) would be acknowledged, Interruptible points
occur at the end of every instruction and during the execu-
tion of some instructions (such as the byte string group). The
watchdog timer measures elapsed time from the last inter-
ruptible point. If the maximum allowable time has been
reached before the next time that an interrupt could be

recognized, the current instruction is aborted and the
watchdog timer runout trap is activated. Except for a non-
existent address used with READ DIRECT (RD) or WRITE
DIRECT (WD) instructions, programs trapped by the watch-
dog timer cannot (in general) be continued. Execution of
XPSD in trap location X'46' is as follows:

1. Store the current PSD. The stored condition code is,
in general, meaningless.

2. Load the new PSD. The instruction address portion of
the PSD remains at the values loaded from memory;
however, the resulting condition code is, generally,
meaningless.

CALL INSTRUCTION TRAPS

The four call instructions (CAL1, CAL2, CAL3, and CAL4)
cause the computer to trap to location X'48' (for CALI)

X'49' (for CAL2), X'4A' (for CAL3), or X'4B' (for CAL4).
Execution of XPSD in the trap location is as follows:

1. Store the current PSD. The stored condition code is
that which existed at the end of the instruction imme-
diately prior to the call instruction.

2. Load the new PSD.

3. Modify the new PSD,

a. The R field of the call instruction is logically
ORed with the condition code value loaded from
memory, and the result is loaded into the condi-
tion code.

b. If bit 9 of XPSD contains a 1, the R field of the
call instruction is added to the instruction address
loaded from memory.

If bit 9 of XPSD containa a 0, the instruction ad-
dress remains at the value loaded from memory,

Trap System 27

3. INSTRUCTION REPERTOIRE

This section describes all SIGMA 6 instructions, grouped
in the following functional classes:

Page

1. Load and Store 28
2. Analyze and Interpret 34
3. Fixed-Point Arithmetic 36
4, Comporison 41
5. Logical 43
6. Shift 44
7. Conversion 46
8. Floating-Point Arithmetic (optional) 47
9. Decimal 51
10. Byte String 57
11. Push Down 64
12. Execute and Branch 69
13. Call 71
14. Control 72
15. Input/Qutput 79

SIGMA 6 instructions are described in the following format:
® @
MNEMONIC INSTRUCTION NAME

(Addressing type@, Optiono|®
Privileged @, Interrupt Action@)

@
* . X | Reference address
0| Operation R Operand
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 I?i?ﬂ 21 22 23124 25 26 27128 25 30 31
Description
Affected @ Trap

Symbolic notation ®

Condition Code Settings®
Trap Acfion®
Excmp|e®

. MNEMONIC is the code used by the SIGMA 6 assem-
blers to produce the instruction's basic operation code.

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type is one of the following:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value) can
be used to address a byte in core memory or in the
current block of general registers.

b. Halfword index alignment: the reference address
field of the instruction (plus the displacement value)
can be used to address a halfword in core memory
or in the current block of general registers.

c. Word index alignment: the reference address field
of the instruction (plus the displacement value) can
be used to address any word in core memory or in
the current block of general registers.

28 Instruction Repertoire

d. Doubleword index alignment: the reference addres
field of the instruction (plus the displacement value)
can be used to address any doubleword in core mem-
ory or in the currentblock of general registers. The
addressed doubleword is automatically located
within doubleword storage boundaries.

e. Immediate operand: the instruction word contains

an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i.e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instruction, in which case the
computer unconditionally aborts execution of the
instruction (at the time of operation code decoding)
and traps to location X'40', the "nonallowed
operation” trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word con-
tains an address displacement used as part of the
instruction execution. If indirect addressing is at-
tempted with this type of instruction, the computer
treats the instruction as a nonexistent instruction,
in which case the computer unconditionally aborts
execution of the instruction (at the time of opera-
tion code decoding) and traps to location X'40',
Indexing does not apply to this type of instruction.

If the instruction is not in the standard SIGMA 6 in-
struction set, it is labeled "optional”. If execution of
an optional instruction is attempted on a computer in
which the instruction is not implemented, the computer
unconditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to loca-
tion X'41', which is the "unimplemented instruction
trap".

If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged”. If
execution of a privileged instruction is attempted while
the computer is in the slave mode, the computer un-
conditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to lo-
cation X'40',

If the instruction can be successfully resumed after its
execution sequence has been interrupted by an interrupt
acknowledgment, the instruction is labeled "continue
after interrupt". Otherwise, the instruction is either
completed or the instruction is aborted and then re-
started after the interrupt is cleared. In the case of
the "continue after interrupt" instructions, certain gen-—
eral registers contain intermediate results or control
information that allows the instruction to continue
properly. In the case of chorted instructions, all af-
fected registers are restored to the values they con-
tained immediately before the aborted instruction was
begun.

7.

[nstruction format: 8.

a.

Indirect addressing — If bit position O of the in-

struction format contains an asterisk (*), the in-

struction can utilize indirect addressing; however,

if bit position 0 of the instruction format contains

a 0, the instruction is of the immediate addressing 9.
type, which is treated as a nonexistent instruction

if indirect addressing is attempted (resulting in a

trap to location X'40').

Operation code — The operation code field (bit
positions 1-7) of the instruction is shown in hexa-
decimal notation.

R field — If the register address field (bit positions
8-11) of the instruction format contains the char-
acter "R", the instruction can specify any register
in the current block of general registers as an op-
erand source, result destination, or both; otherwise,
the function of this field is determined by the in- 1.
struction.

X field — If the index register address field (bit

positions 12-14) of the instruction format contains 12
the character "X", the instruction can specify

indexing with any one of registers 1 through 7

in the current block of general registers; other-

wise, the function of this field is determined by

the instruction.

Reference address field — Normally, the reference
address field (bit positions 15-31) of the instruc-
tion format is used as the initial address value for
an instruction operand. For instructions of the im-
mediate addressing type, the effective address of
the instruction is not used to access an operand;
instead, the effective address itself is used as an
operand. In these cases, the function of the ef-
fective address is represented in the lower half of
the reference address field in the instruction for-
mat diagram.

Value field — In some fixed-point arithmetic in-
structions, bit positions 12-31 of the instruction
format contain the word “value". This field is
treated as a 20-bit integer, with negative inte-
gers represented in two's complement form.

Displacement field — In the byte string instructions,
bit positions 12-31 of the instruction format con~
tain the word "displacement.” In the execution

of the instruction, this field is used to modify the
source address of an operand, the destination ad-
dress of a result, or both.

Ignored fields — In the instruction format diagrams,
any area that is shaded represents afield or bit po-
sition that is ignored by the computer (i. e., the con-
tent of the shaded field or bit has no effect on instruc-
tion execution) but shouldbe coded with 0'sso as to
preclude conflict with possible modifications.

Inany format diagram of a general register or mem-~
ory word modified by an instruction, a shaded area
represents a field whose content is indeterminate
after execution of the instruction.

The description of theinstructiondefines the operations

performed by the computer in response to the instruction

configuration depicted by the instruction format diagram.
Any instruction configuration that causes an unpredict-
able result is so specified in the description.

All programmable registers and storage areas that canbe
affected by the instruction are listed (symbolically) after
the word "Affected". The instruction address portion of
the program status doubleword is considered to be af-
fected only if a branch condition can occur as a result
of the instruction execution, since the instruction ad-
dress is updated (incremented by 1) as part of every in-
struction execution,

All trap conditions that may be invoked by the execu-
tion of the instruction are listed after the word "Trap".
SIGMA 6 trap locations are summarized in the section
“Trap System",

The symbolic notation presents the instruction operation
as a series of generalized symbolic statements, The sym-
bolic terms used in the notation are defined in Table 4.

Condition Code settings are given for each instruction
that affects the condition code. A 0 or al under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC1, CC2, CC3, or
CC4, respectively, for the reasons given. If a hyphen
(=) appears in columns 1, 2, 3, or 4, that portion of the
condition code is not affected by the reason given for
the condition code bit(s) containing a O or 1. For ex-
ample, the following condition code settings are given
for a comparison instruction:

1 2 3 4 Result of comparison

- - 0 0 equd

- - 0 1 register operand is arithmetically
less than effective operand

- - 1V 0 register operand is arithmetically
greater than effective operand

- 0 =~ - thelogical product (AND) of the

two operands is zero
the logical product of the two

operands is nonzero

CC1 is unchanged by the instruction, CC2 indicates
whether or not the two operands have 1's in corres-

- ponding bit positions, regardless of their arithmetic

relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two operands, regard~
less of whether or not the two operands have 1's in
corresponding bit positions, For example, if the
register operand is arithmetical ly less than the effec-
tive operand and the two operands both have 1's in at
least one corresponding bit position, the condition
code setting for the comparison instruction is:

1 2 3 4
-1 0 1

The above statements about the condition code are valid
only if no trap occurs before the successful completion of

Instruction Repertoire 29

the instruction execution cycle. If a trap does occur
during the instruction execution, the condition code
is normally reset to the value it contained before the
instruction was started, and then the appropriate trap

location is activated,

13. Actions taken by the computer for those trap con-
ditions that may be invoked by the execution of
the instruction are described. The description
includes the criteria for the trap condition, any
controlling trap mask or inhibit bits, and the action
taken by the computer. In order to avoid unnecessary
repetition, the two trap conditions that apply to all

14,

instructions (i.e., nonallowed operations and
watchdog timer runout) are not described for each
instruction.

Some instruction descriptions provide one or more
examples to illustrate the results of the instruction,
These examples are intended only to show how the
instructions operate, and not to demonstrate their

full capability. Within the examples, hexadecimal
notation is used to represent the contents of general
registers and storage locations (condition code set-
tings are shown in binary notation. The character "x"
is used to indicate irrelevant or ignored information.

Table 4. Glossary of Symbolic Terms

Term Meaning Term Meaning
() Contents of . independent of the program's actual location
AM Fixed~-point arithmetic trap mask — bit 11 of Ln fcore memory, and. s t.he fur;al odjress value
the program status doubleword. If this bit is etore memory mapping Is pertormed.
a 1, the computertraps to location X'43" after EBL Effective byte location — the byte location
executing an instruction that causes fixed- pointed to by the effective virtual address of
point overflow; if this bit is a 0, the computer an instruction for a byte operation,
H 1 '
does not trap to location X'43'. EB Effective byte — the 8-bit contents of the
I Instruction register — the internal CPU register effective byte location, or (EBL).
use.cli tohhold ms;rn{cflons obtained from memory EHL Effective halfword location — the halfword lo-
while they are being decoded. cation pointed to by the effective virtual ad-
R General register address value — the 4-bit con- * dressof an instruction fora halfword operation.
tents of bit positions 8-11 (the R field) of an in- EH Effective halfword — the 16-bi ‘
struction word, also expressed symbolically as sctive haliword — the ~Pit confents o
. . . the effective halfword location, or (EHL).
(Dg-11- In the instruction descriptions, reg- _
ister R is the general register (of the current EWL Effective word location — the word location
register block) that corresponds to the R field pointed to by the effective virtual address of
address value. an instruction for a word operation.
Rul Odd register address value — register Rul is the EW Effective word — the 32-bit contents of the
general register pointed to by the value obtained effective word location, or (EWL).
by logl-cally ORing 090] into the oddress. value EDL Effective doubleword location — the double~
for register R. Thus, if the R field of an instruc- . . .
. . _ . word location pointed to by the effective
tion contains an even value, Rul =R + 1,and if . | add f an instruction f double-
the R field contains an odd value, Rul =R, virtual a roos of an instruction for a double
word operation. If an odd~numbered word lo-
X Index register address value — the 3-bit contents cation is specified for a doubleword operation,
of bit positions 12-14 (the X field) of an instruc- the low=order bit of the effective address field
tion word, If X =0 for an instruction, no index- (bit position 31) is automatically forced to 0.
ing is performed. If X # 0 for an instruction, in- Thus, an odd-numbered word address (referring
dexing is performed (after indirect addressing if to the middle of a doubleword) designates the
indirect addressing is called for) with general same doubleword as an even~numbered word
register X in the current register block. address, when used for adoubleword operation.
RA Reference address — the contents of bit positions ED Effective doubleword — the &4-bit contents of
15-31 of an instruction word. This 17-bit field the effective doubleword location, or (EDL).
is capable of directly addressing any general
register in the current register block (by using ccC Condition code — a 4-bit valve (whose bit
a value in the range 0-15) or any word in core positions are labeled CCI, CC2, CC3, ond
memory in the address range 16 through 131,071, CC4) that is established as part of the exe-
This address value is the initial address value for cution of most SIGMA 6 instructions.
any s?bsequenf address cor31pufotions, memory FN Floating normalize mode control — bit 7 of the
mapping, or both computation and mapping. program status doubleword. If this bit is a 0,
EVA Effective virtual address — the virtual address the results of floating=-point additions and
value obtained as a result of indirect addressing subtractions are to be normalized; if this bit
and/or indexing. This address value is is a 1, the results are not normalized.
30 Instruction Repertoire

Table 4. Glossary of Symbolic Terms (cont.)

Term Meaning

Term Meaning

FS Floating significance mode control — bit 5 of
the program status doubleword. If this bit is

a 1, the computer traps to location X'44'

when more than two hexadecimal places of
postnormalization shifting are required for a
floating=point addition or subtraction; if this
bit is 0, no significance checking is performed.

FZ Floating zero mode control — bit 6 of the pro=
gram status doubleword. If this bit isa 1, the
computer traps to focation X'44' when either

characteristic underflow or a zero result occurs
for a floating-point multiplication or division;
if this bit is a 0, characteristic underflow and
zero results are treated as normal conditions,

1A Instruction address — the 17-bit value that de-
fines the virtual address of an instruction
tion is executed,

X'n' Hexadecimal qualifier — a hexadecimal value
(n) is an unsigned string of hexadecimal digits
(0 through 9 and A through F) surrounded by

immediately prior to the time that the instruc-

single quotation marks and preceded by the

qualifier "X" (for example, 7BO]6 is writ-
ten X'7B0'.

n AND (logical product, where 0 n 0 =0,
O0nl1=0,1n0=0,and 1 n1=1),

v OR (logical inclusive OR, where 0 v 0 = 0,
Oul=11u0=1and1u1l=1),

© EOR (logical exclusive OR, where 0 @0=0,
0@1=1,1@0=1, and 1 @ 1 = 0).

SE Sign extension — some SIGMA 6§ instructions

operate on two operands of different lengths;
the two operands are made equal inlength by
extending the sign of the shorter operand by
the required number of bit positions, For posi-
tive operands, the result of sign extension is
high-order 0's prefixed to the operand; for
negative operands, high-order 1's are prefixed
to the operand. This sign extension process is
performed after the operand is accessed from
memory and before the operation called for by
the instruction code is performed.

LOAD/STORE INSTRUCTIONS

The following load/store instructions are implemented in
SIGMA 6 computers:

Instruction Name Mnemonic
Load Immediate LI
Load Byte LB
Load Halfword LH
Load Word Lw
Load Doubleword LD
Load Complement Halfword LCH
Load Absolute Halfword LAH
Load Complement Word LCwW
Load Absolute Word LAW
Load Complement Doubleword LCD
Load Absolute Doubleword LAD
Load Selective LS
Load Multiple LM
Load Conditions and Floating Control

Immediate LCFI
Load Conditions and Floating Control LCF
Exchange Word Xw
Store Byte STB
Store Halfword STH
Store Word STW
Store Doubleword STD
Store Selective STS
Store Multiple STM
Store Conditions and Floating Controls STCF

SIGMA 6 load and store instructions operate with informa-
tion fields of byte, halfword, word, and doubleword lengths.

Load instructions load the information indicated into one of
the general registers in the current register block. Load
instructions do not affect core memory storage; however,
nearly all load instructions provide a condition code setting
that indicates the following information about the contents
of the affected general register(s) after the instruction is
successfully completed:

Condition code settings:
1 2 3 4
- - 0 0

Result

zero — the result in the affected register(s)
isall 0's.

negative — register R contains a 1 in bit
position 0.

positive — register R contains a 0 in bit
position 0, and at least one 1 appears in
the remainder of the affected register(s)
(or appeared during execution of the cur-
rent instruction.)

no fixed-point overflow — the result in
the affected register(s) is arithmetically
correct.

fixed-point overflow — the result in the
affected register(s) is arithmetically
incorrect.

Store instructions affect only that portion of memory storage
that corresponds to the length of the information field speci-
fied by the operation code of the instruction; thus, register
bytes are stored in memory byte locations, register halfwords
in memory halfword locations, register words in memory

Load/Store Instructions 31

word locations, and register doublewords in memory double-
word locations. Store instructions do not affect the contents
of the general register specified by the R field of the instruc~-
tion, unless the same register is also specified by the effec-
tive virtual address of the instruction.

u LOAD IMMEDIATE
(Immediate operand)

0 22 R

0 1 2 314 576 718 9 10 11 I2|J|415|1617|BI920212223'242526272529303‘

Value

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positions to the
left and then loads the 32-bit result into register R.

Affected: (R),CC3,CC4

M358 — R
Condition code settings:

1 2 3 4 ResultinR
- - 0 0 zero

- - 0 1 negative

- - 1 0 positive

If LLis indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera-
tion code decoding) and traps to location X'40' with the
contents of register R and the condition code unchanged.

L8 LOAD BYTE
(Byte index alignment)

* 72 R X Reference address

0 12 374 5 6 778 9 10 11112 13 14 15116 17 18 !9?2021 22 23124725 26 27128 29 30 31

LOAD BYTE loads the effective byte into bit positions 24-31
of register R and clears bit positions 0-23 of the register to
all 0's.

Affected: (R),CC3,CC4

BB T Ryp31i 0 7 Ropg
Condition code settings:
1 2 3 4 ResultinR
- - 0 0 =zero
- = 1 0 nonzero
LH LOAD HALFWORD
(Halfword index alignment)
* 52 R X Reference address

0 1 2 3745 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD HALFWORD extends the sign of the effective half-
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R),CC3,CC4

EHSE — R

32 Load/Store Instructions

Condition code settings:

1 2 3 4 ResultinR
- = 0 0 zero

= = 0 1 negative

= = 1 0 positive

kw LOAD WORD
(Word index alignment)

* 32 R X Reference address

0 1 2 3147576 718 9 10 11112 13 74 15176 17 18 9130 37 22 23124725 26 27128 25 30 31

.LOAD WORD loads the effective word into register R.

Affected: (R),CC3,CC4

EW — R

Condition code settings:

1 2 3 4 Resultin®
- - 0 0 zero

- - 0 1 negative
- - 1 0 positive

LD LOAD DOUBLEWORD

(Doubleword index alignment)

* 12 R X Reference address

0 1V 2 3145 & 718 9 1017 1213 14 15006 17 18 19120 21 22 23124 25 26 27138 77 w0 i

LOAD DOUBLEWORD loads the 32 low-order bits of the ef-
fective doubleword into register Rul and then loads the 32
high-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 high-
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see Example 3, below).

Affected: (R),(Rul),CC3,CC4

ED32—63 — Rul; EDO-3I — R
Condition code settings:

1 2 3 4 Effective doubleword
- - 0 0 zero

= = 0 1 negdtive

= - 1 0 positive

Example 1, evenR field value:

Before execution After execution
—=19I€ execulion —cT execution

ED = X'0123456789ABCDEF' X'0123456789ABC DEF"

R) = xxxxxxxx X'01234567'

(Rul) = xxxxxxxx X'89ABCDEF*

CC = xxxx xx10

Example 2, odd R field value:

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'
R) = xxxxxxxx X'01234567'

CC = xxxx xx10

Example 3, odd R field value:

ED X'0000000012345678' X'0000000012345678"
R) = xxxxxxxx X'00000000'
CC = xxxx xx10

LCH LOAD COMPLEMENT HALFWORD
{(Halfword index alignment)

* 5A R X Reference address

O 12 3T s 718 9 10 I2l]|4|5|lél7IS195212223542556272355%31

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two's complement of the result into register R,
(Overflow cannot oceur.)

Affected: (R),CC3,CC4
_[EH SE] —R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 zero
- - 0 | negative
- - 1 0 positive

LAH LOAD ABSOLUTE HALFWORD
(Halfword index alignment)

* 58 R X Reference address

0 12 3Ta 3576 718 9 10 Niti2 13 14 \ST16717 18 19120 21 22 23124 25 26 2712829 30 31

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword 16
bit positions to the left and then loads the 32-bit result in
register R. If the effective halfword is negative, LAH ex-
tends the sign of the effective halfword 16 bit positions to
the left and then loads the 32-bit two's complement of the
result into register R. (Overflow cannot occur.)

Affected: (R),CC3,CC4
IEH SE' —R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 zero
- - 1 0 nonzero

Lcw LOAD COMPLEMENT WORD
(Word index alignment)

* 3A R X Reference address

w12 3T4 5 6 718 9 10N 12 13 14 15106717 18 19120 21 22 23124 25 26 27128 29 30 31

LOAD COMPLEMENT WORD loads the 32-bit two's com-
plement of the effective word into register R. Fixed-point
overflow occurs if the effective word is 23! (X'800000009,
in which case the result in register R is -23) and CC2 s set
to 1; otherwise, CC2 is resef to 0.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW — R

Condition code settings:

1 2 3 4 ResultinR

zero
negative

positive

no fixed-point overflow
fixed-point overflow

1
— O O 1 O
©) -0 O

- 1 O —= 0O

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after exe-
cution of LOAD COMPLEMENT WOR D; otherwise, the com-
puter executes the next instruction in sequence.

LAW LOAD ABSOLUTE WORD

(Word index alignment)

* 38 R X Reference address
0 1 2 374 56 778 9 101112 13 1415118 l7|915202|?223’425565753?9333!

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's complement
of the effective word into register R. Fixed-point overflow
occurs if the effective word is -23](X'80000000'), in which
case the result in register R is ~231 and CC2 is set to 1;
otherwise, CC2 is reset to 0.

f\ffe'cted: (R),CC2,CC3,CC4 Trap: Fixed-point overflow
EW|[— R

Condition code settings:

1 2 3 4 Resultin R

zero
nonzero

no fixed-point overflow
fixed-point overflow (sign bit on)

'
— O 1 O
o1 —- 0
— 1 OO

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43" after exe-
cution of LOAD ABSOLUTE WORD; otherwise, the compu-
ter executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD

(Doubleword index alignment)

1A R X Reference address

0 1 2 3T45 & 718 9 10 11112 13 1415116717 18 wizo 2122 23124 25726 27128 29 30 37

LOAD COMPLEMENT DOUBLEWORD forms the 64 -bit two's
complement of the effective doubleword, loads the 32 low-
order bits of the result into register Rul, and then loads the
32 high-order bits of the result into register R.

If R is an odd value, the result in register R is the 32 high-
order bits of the two's complemented doubleword. The con-
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000"), in which case the result in

Load/Store Instructions 33

registers R and Rul is =263 and CC2 is set to 1; otherwise,
CC2 is reset to 0.

Affected: (R),(Rul),CC2,
CC3,CC4

[—ED]32_63 —~ Rul; [—ED]0_3I — R

Condition code settings:

Trap: Fixed-point overflow

12 3 4 Two's complement of effective doubleword
- 0 0 0 =zero

- = 0 1 negative

- 0 1 0 positive

- 0 - - no fixed-point overflow

- 1 0 1 (fixed-point overflow

If CC2is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43" after exe-
cution of LOAD COMPLEMENT DOUBLEWORD; otherwise,

the computer executes the next instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED = X'0123456789ABCDEF' X'0123456789ABC DEF"
R) = xxxxxxxx X'FEDCBA98'

Rul) = xxxxxxxx X'76543211"

CC = xxxx x001

Example 2, odd R field value:

ED = X'0123456789ABCDEF' X'0123456789ABCDEF'
R) = xxxxxxxx X'FEDCBA98'
CC = xxxx x001
LAD LOAD ABSOLUTE DOUBLEWORD
(Doubleword index alignment)
* 1B R X Reference address

T T3t 5 e 715 T 0 B R T B e T e S e e o oS

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Rul, and then loads the 32 high-
order bits of the effective doubleword into register R. If R

is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code settings
are based on the effective doubleword, rather than the final
result in register R,

If the effective doubleword is negative, LAD forms the
64-bit two's complement of the effective doubleword, loads
the 32 low-order bits of the two's complemented doubleword
into register Rul, and then loads the 32 high~order bits of the
two's complemented doubleword into register R. If R is an
odd value, the result in register R is the 32 high-order bits
of the two's complemented doubleword. The condition code
settings are based on the two's complement of the effective
doubleword, rather than the final result in register R.

Fixed-point overflow occurs if the effective doubleword is

-263 (X'8000000000000000'), in which case the result in

34 Load/Store Instructions

registers R and Rul is -263 and CC2 is set to 1; otherwise,

CC2 is reset to 0.
Affected: (R),(Rul),CC2,

CC3,CC4
1]

32-63

Condition code settings:

Trap: Fixed-point overflow.

— Rul; [ED]) o0 — R

1 2 3 4 Absolute value of effective doubleword
- 0 0 0 zero

- = 1 0 nonzero

- 0 - - no fixed-point overflow

- 1 0 1 (fixed-point overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM} isa 1, the computer traps to location X'43' after exe-
cution of LOAD ABSOLUTE DOUBLEWORD; otherwise, the

computer executes the next instruction in sequence.

Example 1, even R field value:
Before execution After execution
ED = X'0123456789ABCDEF' X'0123456789ABCDEF’
R) = xxxxxxxx X'01234567'
RuT) = xxxxxxxx X'89ABCDEF!
CC = xxxx x010
Example 2, even R field value:
ED = X'FEDCBA9876543210' X'FEDCBA9876543210"
R) = xxxxxxxx X'01234567'
Rul) = xxxxxxxx X'89ABCDFOQ!
CC = xxxx x010
Example 3, odd R field value:
ED = X'0123456789ABCDEF' X'0123456789ABC DEF'
R) = xxxxxxxx X'01234567"
CC = xxxx x010
LS LOAD SELECTIVE
(Word index alignment
* 4A R X Reference address

0O 1 2 314

506 718 9 10 1112 1314 15115 17 18 15120 21 22 23124 25 26 27128 25 30 31

Register Rul contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into register R

in those bit positions selected by a 1 in corresponding bit
positions of register Rul. The contents of register R are not
affected in those bit positions selected by a 0 in correspond-
ing bit positions of register Rul.

If R is an odd value, LS logically ANDs the contents of
register R with the effective word and loads the result into
register R. If corresponding bit positions of register R and
the effective word both contain 1's, a 1 remains in register
R; otherwise, a 0 is placed in the corresponding bit position
of register R.

Affected:

(R), CC3, CC4

If R is even, [EWn(RuT)Ju[(R)n(Rul)]—R
If R is odd, EWn(R)—R

Condition code settings:

] 2 3 4 ResultinR

- - 0 0 =zero
bit 0 of register Risa 1

bit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one 1

Example 1, even R field value:

Before execution After execution
berore execution Alrer execution

EW = X'01234567" X'01234567'
(Rul) = X'FFOOFFQO" X'FFOOFFO00'
R) = xxxxxxxx X'01xx45xx’
CC = xxxx xx 10

Example 2, odd R field value:

Before execution After execution
oclore execurton LTer execurion

EW = X'89ABCDEF' X'89ABCDEF!
(R) = X'FOFOFOFO' X'80A0COEQ!
CC = xxxx xx01

LM LOAD MULTIPLE
(Word index alignment)

* 2A R X Reference address

0 1 2 314 5 6 718 9 1011112 13 14 1571671718 19120 21 22 23124 25 26 27128 29 30 31

LOAD MULTIPLE loads a sequential set of words into a se-
quential set of registers. The set of words to be loaded be-
ginswith the word pointed to by the effective address of LM,
and the set of registersbegins with register R. The set of reg-
isters is treated modulo 16 (i.e., the next register loaded
after register 15 is register O in the current register block).

The number of words to be loaded into the general registers

is determined by the value of the condition code immediately
before the execution of LM. (The desired value of the con-
dition code can be set with LCF or LCFI.) An initial value

of 0000 for the condition code causes 16 consecutive words

to be loaded into the register block.

Affected: (R) to (R+CC-1)
(EWL) —R, EWL+1) —R+1, ..., (EWL+CC-1) —R+CC-1

If the instruction starts loading words from an accessible
region of memory and then crosses into an inaccessible mem-
ory region, either the memory protection trap or the nonex-
istent memory address trap can occur, In ejther case, the
trap is activated with the condition code unchanged from
the value it contained before the execution of LM. The ef-
fective address of the instruction permits the trap routine to
compute how many registers have been loaded. Since it is
permissible to use indirect addressing or indexing through a
general register, or even to execute an instruction located
in a general register, a trapped LM instruction may have
already overwritten the index, direct address, or the LM
instruction itself, thus destroying any possibility of contin-
uing the program successfully. If such programming must

be done, it is advisable that the register containing the di~
rect address, index displacement, or instruction be the last
register loaded by the LM instruction.,

If the effective virtual address of the LM instruction is in
the range 0 through 15, then the words to be loaded are
taken from the general registers rather than from core mem-
ory. In this case the results will be unpredictable if any of
the source registers are also used as destination registers.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate operand)

FIF

g F
0 02 Fi. : ccC JS|ZN

10 13712 13 14 15118 17 18 19120 27 27 23124 25 20 2728 29 30 3.

0 1 2 374 5 ¢

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL IMMEDIATE
loads the contents of bit positions 24 through 27 of the in-
struction word into the condition code; however, if bit 10

is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI
loads the contents of bit positions 29 through 31 of the in-
struction word into the floating significance (FS), floating
zero (FZ), and floating normalize (FN) mode control bits,
respectively (in the program status doubleword); however,
if bit 11 is 0, the FS, FZ and FN control bits are not af-
fected. The functions of the floating-point control bits
are described in the section "Floating-point Instructions".

Affected: CC,FS,FZ, FN

If (I)]0 =1, (1)24_27 —CC

If (I)]0 =-0, CC is not affected

IF (1)) =1, (Dyg_g — FS,FZ, FN

If (I)” =0, FS,FZ, and FN not affected

Condition code settings, if (I)]O =1:

1 2 3 4

Waa Was Wy)y,

If LCF1 is indirectly addressed, it is treated as a nonexis-
tent instruction, in which case the computer uncondition-
ally aborts execution of instruction (at the time of operation
code decoding) and traps to location X'40' with the condi-
tion code unchanged.

LCF LOAD CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

* 70

01V 2 314 56 7

X Reference address

10 11112 13 14 15116 17 18 wl20 21 22 23124 25 26 27128 29 30 31

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL loads bits 0
through 3 of the effective byte into the condition code; how-
ever, if bit 10 is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normalize
(FN) mode control bits, respectively; however, if bit 11 is
0, the FS, FZ and FN control bits are not affected. The

Load/Store Instructions 35

functions of the floating-point mode control bits are de-
scribed in the section "Floating-point Instructions".

Affected: CC,FS,FZ,FN
If (l)]0 =1, EBo_s—* CC

If (I)10 =0, CC not affected
If (I)” =1, EB5_7‘——’ FS,FZ,FN
If (l)” =0, FS,FZ, FN not affected

Condition code settings, if (I)IO =1:

1 2 3 4
€Dy (EB), (EB), (EB),

XW EXCHANGE WORD
(Word index alignment)

* 46 R X Reference address

0 1 2 3i4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23?24 25 26 27128 29 30 3

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R),(EWL),CC3,CC4

(R) — (EWL)

Condition code settings:
T2 3 4 ResultinR
- - 0 0 zero

- - 0 1 negative
- - 1 0 positive

ST8 STORE BYTE
(Byte index alignment)

* 75 R X Reference address

0123145 67189 TN BRBIR T BRE TS BHE % T BD 0
STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R)24_31 — EBL

STH STORE HALFWORD
(Halfword index alignment)

* 55 R X Reference address
0 T 2 314 5 6 718 9 10 1NZ 1314 15176 17 18 WM 21 22 23128 25 25 T18 5 30 37
STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the in-
formation in register R exceeds halfword data limits, CC2 is
set to 1; otherwise, CC2 is reset to 0.

Affected: (EHL),CC2

Ry — EHL

Condition code settings:

1 2 3 4 Information inR
- 0 - (R)O-lé =all 0'sorall 1's
- 1 - - @ #all 0'sorall 1's

0-16

36 Load/Store Instructions

STW STORE WORD
{Word index alignment)

* 35 R X Reference address

0 v 2 314576 718 5 10 11112 13 74 15116 17 18 19120 21 22 23124 5 26 2128 B 30 3

STORE WORD stores the contents of register R into the ef-
fective word location.

Affected: (EWL)
R) — EWL

STD STORE DOUBLEWORD
(Doubleword index alignment)

*l 15 R X

0 1 2 3Ta 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 8 3 31

STORE DOUBLEWORD stores the contents of register R into the
32 high-order bit positions of the effective doubleword loca-
tion andthen stores the contents of registerRul into the 32 low -
order bit positions of the effective doubleword location.

Reference address

Affected: (EDL)

®) —EDL) 4; Rul) — EDL,,

Example 1, even R field value:

Before execution After execution

R) = X'01234567'
(Rul) = X'89ABCDEF'
(EDL) = xXXXXXXXXXXXXXXX

X'01234567'
X'89ABCDEF'
X'0123456789ABCDEF"

Example 2, odd R field value:
R) = X'89ABCDEF'

(EDL) = XXXXXXXXXXXXXXXX

X'89ABCDEF!
X'89ABC DEF89ABC DEF!

STS STORE SELECTIVE
(Word index alignment)

* 47 R X Reference address

0 1 2 304 576 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Register Rul contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a 1
in corresponding bit positions of register Rul; the effective
word remains unchanged in those bit positions selected by a
0 in corresponding bit positions of register Rul.

IfRisanodd value, STSiogically inclusive ORs the contents
of register R with the effective word and stores the result
into the effective word location. The contents of register
R are not affected.

Affected: (EWL) _
IfR is even, [(R)aRul)] u [EWaRuT)] — EWL
IfR isodd, R) u EW — EWL

Example 1, even R field value:

Before execution After execution

(R) = X'12345478" X'12345678'
(Rul) = X'FOFOFOFO' X'FOFOFQFQ'
EW = xxxxxxxx X' 1x3x5x7x"

Example 2, odd R field valye:
Before execution

(R) = X'OOFFOOFF"
EW = X'12345678"

After execution

X'00FFOOFF*
X' 12FF56FF'

STM STORE MULTIPLE
(Word index alignment)

* 28 R X

0 23T 5 6 718 5wz 133 15016717718 19720 21 22 23124 25 26 27128 29 30 3t

STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effective
word address of STM, and the set of registers begins with
register R, The set of registers is treated modulo 16 (i.e.,
the next sequential register after register 15 is register 0).
The number of registers to be stored is determined by the
value of the condition code immediately before execution

of STM. (The condition code can be set to the desired val-
ue before execution of STM with LCF or LCFI.) An initial
value of 0000 for the condition code causes 16 general regi-
sters to be stored.

Reference address

Affected: (EWL) to (EWL+CC-1)
(R) —EWL, (R+1)—EWL+1,.. ., (R+CC-1)— EWL + CC-1

If the instruction starts storing words into an accessible region
of the memory and then crosses into an inaccessible memory
region, either the memory protection trap or the nonexistent
memory address trap can occur. In either case, the trap is
activated with the condition code unchanged from the value
it contained before the execution of STM. The effective
address of the instruction permits the trap routine to com-
pute how many words of memory have been changed. Since
it is permissible to use indirect addressing through one of
the affected locations, orevento executean instruction lo-
cated in one of the affected locations, a trapped STM
instruction may have already overwritten the direct address,
or the STM instruction itself, thys destroying any possibility
of continuing the program successfully, If such programming
must be done, it isadvisable that the direct address, or the
STM instruction, occupy the last location in which the con-
tents of a registerare tobe stored by the STM instruction,

If the effective virtual address of the STM instruction is in
the range 0 through 15, then the registers indicated by the
R field of the STM instruction are stored in the general reg-
isters rather than in core memory. In this case the resul ts
will be unpredictable if any of the source registers are also
used as destination registers.

STCF STORE CONDITIONS AND FLOATING CONTROL
(Byte index alignment)

* 74

01 2 374 5 & 7

STORE CONDITIONS AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating
normalize (FN) mode control bits of the program status
doubleword into the effective byte location as follows:

X Reference address

T SR | R P 1 70 T Ty b

FIFTF)
cc_PlgoN

0 1 2374 5 6 7

Affected: (EBL)
(PSD)0_7 — EBL

ANALYZE/INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index alignment)

* 44 J R) X Reference address

0 1 237145 3 718 3wz o 15106 718 5120 2y 27 23725 35 38 ST o

The ANALYZE instruction treats the effective word as o
SIGMA 6 instruction and calculates the effective virtual
address that would be generated by the instruction if the
instruction were to be executed. ANALYZE produces an
answer to the question, “"What effective virtual address
would be used by the instruction located at N if it were
executed now?" The ANALYZE instruction determines
the addressing type of the "analyzed" instruction, calcy-
lates its effective virtual address (if the instruction is not
an immediate-operand instruction), and loads the effective
virtual address into register R as a displacement valye
(the condition code settings for the ANALYZE instruction
indicate the addressing type of the analyzed instruction).

The nonexistent instruction, the privileged instruction vio-
lation, and the unimplemented instruction trap conditions

can never occur during execution of the ANLZ instruction,
However, either the nonexistent memory address condition
or the memory protection violation trap condition (or both)
can occur as a result of any memory access initiated by the
ANLZ instruction. If either of these trap conditions occur,
the instruction address stored by an XPSD in trap location

X'40" is always the virtual address of the ANLZ instruction.

The detailed operation of ANALYZE is as follows:

1. Thecontents of the location pointed to by the effective
virtual address of the ANLZ instruction is obtained. This
effective word is the instruction to be analyzed. From «
memory -protection viewpoint, the instruction (to be ana-
lyzed) is treated as an operand of the ANLZ instruction;
that is, the analyzed instruction may be obtained from
any memory area to whichthe program has read access.

2a. If the operation code portionof the effective word spec-
ifies an immediate-addressing instruction type, the
condition code is set to indicate the addressing type,
and instruction execution proceeds to the next instruc-
tion in sequence after ANLZ, The original contents of
register R are not changed when the analyzed instruc~
tion is of the immediate-addressing type.

2b. If the operation code portion of the effective word spec-
ifies o reference-addressing instruction type, the condi-
tion code is set to indicate the addressing type of the
analyzed instruction and the effective address of the
analyzed instruction is computed(using all of the normal
address computation rules), If bit 0 of the effective word
is a 1, the contents of the memory location specified by
bits 15-31 of the effective word are obtained and then

Analyze/Interpret Instructions 37

used as a direct address. The nonallowed operation Table 5. ANALYZE Table for SIGMA 6 Operation Codes

trap (memory protection violation or nonexistent memory
address) can occur asa result of the memory access. In- X'n' | X'00'+n | X'20'+n X'40"+n X'60"+n
dexing isalways performed (with anindex register in the
current register block) if bits 12-14 of the analyzed in- 00 | — Al TT8BS CBs
struction are nonzero. The effective virtual address of o1t { — @ CI TBS @ MBS
the analyzed instruction is aligned as an integer dis- 02 | LCFI LI —_— -_—
placement value and loaded into register R, accord- 03 | — MI -_— EBS
ing to the instruction addressing type, as follows: 04 | CALI SF ANLZ BDR
Byte Addressing: 05 | CAL2 S Cs BIR
06 | CAL3 — XwW AWM
0000 0000 0000 O 19-bit byte displacement 07 | CAL4 | — STS EXU
0 1 2 374 5 & 718 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 3 08 PLW Cvs EOR BCR
Halfword Addressing: 09 | PSW CVA OR BCS
0A | PLM LM LS BAL
0000 0000 0000 00| 18-bit halfword displacement 0B | PSM STM AND INT
0O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23724 25 26 27128 27 30 31 OC —_— —_— SIO RD
Word Addressing: ob | — @ _ TIO WD
: + OE | LPSD WAIT TDV AlIO
0000 0000 0000 000 17~bit word displacement OF | XPSD LRP HIO MMC
0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 2 27128729 30 31]0 AD AW AH LCF
Doubleword Addressing: 1 CD CW CH CB
T6-bit double- 12 LD LW L LB
0000 0000 0000 0000 word displacement 13 | MSP MTW MTH MTB
ST 2 3146 718 9 16 11112 13 14 15116 17 18 19120 21 22 23124 25 2 27128 29 30 3 14 - _— —_— STCF
Operation codes and mnemonics for the SIGMA 6 instruc- 15 | STD STW STH STB @
tion set are shown in Table 5. Circled numbers in the table 16 | — DW DH @ PACK
indicate the condition code value (decimal) available to the 17 — MW MH UNPK
next |r.wsfruchor.1 after ANALYZF when a d.urecf—ad'dressmg 18 | sp SW SH DS
operation code in the corresponding addressing type is analyzed. 19 | cm CIR - DA
Affected: (R), CC 1A | LCD LCW LCH DD
Condition code settings: '8 LAD LAW LAH DM
. . 1C | FSL FSS —_ DSA
1 2 3 4 Instruction addressing type 10 | FAL FAS _ DC
0 0 - 0 |byte 1E | FDL FDS -_ DL
0 0 - 1 immediate byte 1IF | FML FMS — DST
0 1 - 0 halfword
T 0 - 0 word
10 - 1 immediate, word loads O's into bit positions 0-15 of register R (bits 4~15
1 I - 0 doubleword of the effective word are ignored in this case).
- - 0 - direct addressing (EWg = 0)
- - 1 = indirect addressing (EWg = 1) Affected: (R), (Rul),CC
INT INTERPRET o T
EW — R ;0 — R
(Word index alignment) 4-15 20-31 0-19
EWig-31 = Ruljggpi 0 — Rulg s
* 6B R X Reference address Condition code settings:
0 1 2 314 5 & 718 9 10 11112 13 14 15176 1716 B1%6 77 32 53138 3528 5515 55 3057
1 2 3 4
INTERPRET loads bits 0-3 of the effective word into the EWg EW) EW» EW;3

condition code, loads bits 4-15 of the effective word
into bit positions 20-31 of register R (and loads 0's into

Example 1, even R field value:
the remainder of register R), and then loads bits 16-31

of the effective word into bit positions 16-31 of register Before execution After execution
Rul (and loads 0's into bit positions 0-15 of register Rul). EW = X'12345678' X'12345678"

If R is an odd value, INT loads bits 0-3 of the effective R) = xxxxxxxx X'00000234"
word into the condition code, loads bits 16=31 of the ef- Rul) = xxxxxxxx X'00005678"
fective word into bit positions 16-31 of register R, and CC = xxxx 0001

38 Analyze/Interpret Instructions

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructionsare included
as a standard feature of the SIGMA 6 computer:

Instruction Name Mnemonic
Add Immediate Al
Add Halfword AH
Add Word AW
Add Doubleword AD
Subtract Halfword SH
Subtract Word SW
Subtract Doubleword SD
Multiply Immediate MI
Multiply Halfword MH
Multiply Word MW
Divide Halfword DH
Divide Word DW
Add Word to Memory AWM
Modify and Test Byte MTB
Modify and Test Halfword MTH
Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may br. data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in core memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus permitting the doubling, squaring, or
clearing the contents of a register by using a reference
address value equal to the R field value.

All fixed-point arithmetic instructions provide a condition
code setting that indicates the following information about

the result of the operation called for by the instruction:

Condition code settings:

1 2 3 4 Result

= - 0 0 zero-—The result in the specified general
register(s) is all zeros.

negative — The instruction has produced a
fixed-point negative result,

positive — The instruction has produced a
fixed-point positive result,
p P

fixed-point overflow has not occurred
during execution of an add, subtract, or
divide instruction, and the result is
correct,

fixed-point overflow has occurred during
execution of an add, subtract, ordivide
instruction, For addition and subtraction,
the incorrect result is loaded into the
designated register(s). For a divide in-
struction, the designated register(s), and
CC1, CC3, and CC4 are not affected.

N
w
S

Result

0 - - - nocarry —Foran add or subtract instruc-
tion, there was no carry of a 1-bit out of
the high-order (sign) bit position of the
result,

carry — For an add or subtract instruction,
there was a 1-bit carry out of the sign bit
position of the result. (Subtracting zero

will always produce carry.)

Al ADD IMMEDIATE
(Immediate operand)

0 20 R Value
01 2317 56 718 9 ONNIH Wil TR BB T o s oS

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit position
12 of the instruction word) 12 bit positions to the left, adds
the resulting 32-bit value to the contents of register R, and
loads the sum into register R.

Affected: (R), CC
R+ (05 375 R

Trap: Fixed=point overflow

Condition code settings:

1 2 Result in R

zero
negative

positive

no fixed-point overflow
fixed-point overflow

- - no carry from bit position 0
1 - - = carry from bit position 0

1

1
I —~ OO0 |Ww
1 O —~0 |&

1
1 — O 1

If Al is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and trapsto location X'40" with the contents
of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence,

AH ADD HALFWORD
(Halfword index alignment)

* 50 R X Reference address
CT TS 67183 Wz 0 B U BB BB B E R B
ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective halfword),
adds the 32-bit result to the contents of register R, and loads
the sum into register R,

Affected: (R), CC
(R) + EHSE —R

Trap: Fixed=point overflow

Fixed-Point Arithmetic Instructions 39

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 zero

- - 0 1 negative

- - 1 0 positive

- 0 - - nofixed-point overflow
- 1 - - fixed-point overflow

= = nocarry from bit position 0
carry from bit position 0

1

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to location X'43" after loading the
sum into register R; otherwise, the computer executes the
next instruction in sequence.

AW ADD WORD
(Word index alignment)

* 30 R X Reference address

0 1 2 3T4a 7576 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 °30 31

ADD WORD odds the effective word to the contents of reg-
ister R and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

(R) + EW——~ R
Condition code settings:
1 2 3 4 ResultinR
- - 0 0 zero
- - 0 1 negative
- 1 0 positive
-~ = no fixed-point overflow

fixed-point overflow
- = no carry from bit position 0
carry from bit position 0

i
I — O i

1

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43" after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence,

AD ADD DOUBLEWORD
(Doubleword index alignment)

* 10 R X Reference address
017 2 3014 5 6 718 9 10 11112 13 14 15116 17 |B|9'202|2123242526272929303'

ADD DOUBLEWORD adds the effective doubleword to the
contents of registers R and Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg-
ister Rul and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an odd
value, the result in register R is unpredictable.

Affected: (R), (Rul), CC
(R,Rul) + ED R, Rul

Trap: Fixed-point overflow

Condition code settings:
1 2 3 4 ResultinR, Rul

0 0 zero
- = 0 1 onegative

40 Fixed-Point Arithmetic Instructions

A* 58 R X

1 2 3 4 ResultinR, Rul

- - 1 0 Dpositive

- 0 - no fixed-point ove-flow

- 1 - - fixed-point overflow

0 - - - nocarry from bit position 0

—
I
i

- carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after
loading the sum into registers R and Rul; otherwise, the
computer executes the next instruction in sequence.

Example 1, even R field value:

Before execution After execution
=ciore execution 2T7er execution

ED = X'33333333EEEEEEEE’ X'33333333EEEEEEEE’
(R) = X1 X'44444445'

(Rul) = X'33333333" X'22222221"

CC = xxxx 0010

SH SUBTRACT HALFWORD

(Halfword index alignment)

Reference address

0 1 2 314 56 718 9 10 11012 13 14 15116 17718 9120 21 22 23124 25 26 27128 29 30 31

SUBTRACT HALFWORD extends the sign of the effective
halfword 16 bit positions to the left (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec-
tive halfword), forms the two's complement of the resulting
word, adds the complemented word to the contents of reg-
ister R, and loads the sum into register R.

Affected: (R), CC Trap: Fixed-point overflow

—EHSE + (R)——R

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 =zero

- - 0 1 negative

= - 1 0 Dpositive

- 0 - - no fixed-point overflow

- 1 - - fixed-point overflow

0 - - - nocarry from bit position 0
1 - - - carry from bit position 0

If CC2 is set to 1 and the fixed~point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

Sw SUBTRACT WORD
(Word index alignment)

* 38 R X
01 2 3 i‘ 5 6 718 9 1011213 14 15116 17 18 |?220 21 22 23i24 25 26 27128 29 30 31
SUBTRACT WORD forms the two's complement of the effec-

tive word, adds that complement to the contents of register
R, and loads the sum into register R.

Affected: (R), CC
-EW + (R) R

Reference address

Trap: Fixed-point overflow

Condition code settings:

12 3 4 ResultinR
- - 0 0 zero

= - 0 1 negative
- - 1 0 positive

no fixed-point overflow
fixed-point overflow

no carry from bit position 0
carry from bit position 0

[
—_
|

1

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43" after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

sD SUBTRACT DOUBLEWORD
(Doubleword index alignment)

* 18 R X

0 1V 2 374 5 & 718 6 10 1112 15 14 15016 17 18 19120 21722 23124 25 26 27128 29 30 31

Reference address

SUBTRACT DOUBLEWORD forms the 64-bit two's comple-
ment of the effective doubleword, adds the complemented
doubleword to the contents of registers R and Rul (treated
as a single, 64-bit register), loads the 32 low-order bits

of the sum into register Rul and loads the 32 high-order bits
of the sum into register R. R must be an even value; if R is
an odd value, the result in register R is unpredictable.

Affected: (R),(Rul),CC
-ED + (R, Rul)——R, Ryl

Trap: Fixed-point overflow

Condition code settings:

1 2 3 4 ResultinR, Rul

- - 0 0 zero

= = 0 1 negative

- - 1 0 positive

- 0 - - nofixed-point overflow

- 01 - - fixed-point overflow

0 - - - nocarry from bit position 0

carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after the
result is loaded into registers R and Rul; otherwise, the com-
puter executes the next instruction in sequence.

mi MULTIPLY IMMEDIATE
(Immediate operand)

0 23 R Value

O 12 314756 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The value field (bit positions 12-31 of the instructions word)
is freated as a 20-bit, two's complement integer. MULTI-
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con-
tents of register Rul, then loads the 32 high-order bits of
the product into register R, and then loads the 32 low~
order bits of the product into register Rul.

If R is an odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order to generate a é4-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+1. The conditioncode
settings are based on the 64-bit product formed during in-
struction execution, rather than on the final contents of
register R. Overflow cannot occur.

Affected: (R), (Rul), CC2, CC3, CC4
(Rul) x (i)12—3lSE —-=R, Rul

Condition code settings:

12 3 4 64-bit product

- - 0 0 zero

= = 0 1 negative

- - 1 0 positive

- 0 - - resultiscorrect, asrepresented in reg-

ister Rul

result is not correctly representable in
register Rul alone

If Ml is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera-
tion code decoding) and traps to location X'40' with the
contents of register R, register Rul, and the condition code
unchanged; otherwise, the computer executes the next in-
struction' in sequence.

Example 1, even R field value:

Before execution After execution

(1)12_3] = X'70000' X*'70000"

(R) = XXXXXXXX X'00007000"
(Rul) = X'10001000' X'70000000'
CcC = XXXX x110
Example 2, odd R field value:

(1)12_3] = X'01234 X'01234

(R) = X'00030002* X'369C2468'
CcC = XXXX x010

MH MULTIPLY HALFWORD
(Halfword index alignment)

* 57 R X Reference address

01 2 3745 6 718 9 10 i1z 13 14 15116 17 18 19120 21 22 23124725 26 27128 20 30 31

MULTIPLY HALFWORD multiplies the contents of bit posi-
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, two's complement inte-
gers) and stores the product in register Rul (overflow can-
not occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multiplication with a constant multiplier; however, if R is

Fixed-Point Arithmetic Instructions 41

an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Rul), CC3, CC4
(R)}4_5y X EH ——Rul

Condition code settings:

1 2 3 4 ResultinRul
- - 0 0 zero

- = 0 1 negative

- - 1 0 Dpositive

Example 1, even R field value:

Before execution After execution

EH = X'FFFF' X'FFFF'

(R} = X'xxxx000A' X' xxxx000A"
(Rul) = xxxxxxxx X'FFFFFFF&'
CC = xxxx xx01
Example 2, odd R field value:

EH = X'FFFF' X'FFFF'

(R) = X'xxxx000A' X'FFFFFFF6'
CC = xxxx xx01

mMw MULTIPLY WORD
(Word index alignment)

* 37 R X Reference address

12 3T T8 9 0 11112 13 12 15116 17 18 19120 71 22 23124 25 76 55138 59 30 31

MULTIPLY WORD multiplies the contents of register Rul by
the effective word, loads the 32 high-order bits of the prod-
uct info register R and then loads the 32 low-order bits of
the product into register Rul (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low-
order bits of the product. Thus, in order to generate a 64-
bit product, the R field of the instruction must be even and
the multiplicand must be in register R+1. The condition
code settings are based on the 64-bit product formed during
instruction execution, rather than on the final contents of
register R,

Affected: (R), (Rul), CC
(Rul) x EW —— R, Rul

Condition code settings:

1 2 3 4 b64-bit product

- - 0 0 zero

- = 0 1 negative

- - 1 0 positive

- 0 - - resultiscorrect, as represented in reg-

ister Rul‘

result is not correctly representable in
register Rul alone

42 Fixed-Point Arithmetic Instructions

DH DIVIDE HALFWORD
(Halfword index alignment)

* 56 R X Reference address

0 12 Bil 5 6 718 9 10 nhiz 13 14 lSilé 17 18 19120 21 22 23124 25 26 27128 29 -

DIVIDE HALFWORD divides the contents of register R (treated
as a 32-bit fixed-point integer) by the effective halfword
and loads the quotient intoregister R. [f the absolute value
of the quotient cannot be correctly represented in 32 bits,
fixed-point overflow occurs; in which case CC2 is set to |
and the contents of register R, and CC1, CC3, and CC4
are unchanged.

Affected: (R), CC2, CC3, Trap: Fixed-point overflow

CC4
(R) < EH R
Condition code settings:
I 2 3 4 ResultinR
- 0 0 O zeroquotient, no overflow
- 0 0 1 negadtive quotient, no overflow
- 0 1 0 positive quotient, no overflow
- 1 - - fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43" with the
contents of register R, CC1, CC3, and CC4 unchanged.

bW DIVIDE WORD
(Word index alignment)

* 36 R X - Reference address

E——
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120727722 23124 25 26 27128 29 30 31

DIVIDE WORD divides the contents of registers R and Rul
(treated as a 64-bit fixed-point integer) by the effective
word, loads the integer remainder into register R and then
loads the integer quotient into register Rul. If a nonzero
remuinder occurs, the remainder has the some sign as the
dividend (original contents of register R). IfR is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec-
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of register
R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case, CC2 is set to | and the contents of register R,
register Rul, CC1, CC3, and CC4 remain unchanged; other-
wise, CC2 isreset to 0, CC3 and CC4 reflect the quotient
in register Rul, and CC1 is unchanged.

Affected: (R), (Rul), CC2
CC3, cc4
(R,Rul) + EW R (remainder), Rul (quotient)

Trap: Fixed-point overflow

Condition code settings:

1 2 3 4 ResultinRul
- 0 0 0 zero quotient, no overflow
- 0 0 1 negative quotient, no overflow

Condition code settings:
1 2 3 4

- 0 1 0
R

Result in Rul

positive quotient, no overflow
fixed-point overflow

[f CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' with the
original contents of register R, register Rul, CCl1, CC3, and
CC4 unchanged; otherwise, the computer executes the next
instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index alignment)

* 66 R X

Q02 3TaT5 T8 718 9 00 11112 13 14 15176 17 18 19120 27 22 23134 25 26 27128 29 30 31

Reference address

ADD WORD TO MEMORY adds the contents of register R to
the effective word and stores the sum in the effective word
location. The sum is stored regardless of whether or not
overflow occurs.

Affected: (EWL), CC
EW + (R) EWL

Condition code settings:
12 4 Result in EWL

Trap: Fixed-point overflow

zero
negative

positive

- no fixed-point overflow

- - fixed-point overflow

- = nocarry from bit position 0
carry from bit position 0

I OO (w
o — O

1
I — O

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to location X'43' after the
result is stored in the effective word location; otherwise,
the computer executes the next instruction in sequence.

m18 MODIFY AND TEST BYTE
(Byte index alignment)

* 73 R X

0 i 2 314 5 6 718 9 10 1112 1314 15136 17 18 19120 21 22 23124 25 26 27128 29 30 31

Reference address

If the value of R field is nonzero, the high-order bit of the
R field (bit position 8 of the instruction word) is extended
4 bit positions to the left, to form a byte with bit posi=
tions 0-4 of that byte equal to the high-order bit of the
R field. This byte is added to the effective byte and then
(if no memory protection violation occurs) the sum is stored
in the effective byte location and the condition code is set
according to the value of the resultant byte. This process
allows modification of a byte by any number in the range
-8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value, The condition
code is set according to the result of the test, but the
effective byte is not affected. A memory write-protection

violation cannot occur in this case; however, a memory
read-protection violation can ocecur.

Affected: CC if(l)s_” - 0;
(EBL) and CC if (I)g_1; # O

If ()g_yy 70, EB+ (I)g_| o EBL ond set CC
If (1)8_” =0, test byte and set CC

Condition code settings:

1 2 3 4 ResultinEBL

- 0 0 0 zero

- 0 1 0 nonzero

0 - - - nocarry from byte

1 - - - carry from byte

If MTB is executed in an interrupt location, the condition
code is not affected (see Chapter 2, "Single-Instruction
Interrupts"),

MTH MODIFY AND TEST HALFWORD
(Halfword index alignment)

* 53 R X

0 1 2 314 56 718 9 10 11112 13 14 15116 17 18 19720 21 32 23126 3+ on 271268 29730 31

Reference address

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is extended
12 bit positions to the left, to form a halfword with bit posi-
tions 0-11 of that halfword equal to the high-order bit of the
R field. This halfword is added to the effective halfword and
then (if no memory protection violation occurs) the sum is
stored in the effective halfword location and the condition
code is set according to the value of the resultant halfword.
The sum is stored regardless of whether or not overflow oc-
curs. This process allows modification of a halfword by any
number in the range -8 through +7, followed by a test.

If tne value of the R field is zero, the effective halfword is
tested for being a zero, negative, or positive value. The
condition code is set, according to the result of the test,
but the effective halfword is not affected. A memory write-
protection violation cannot occur in this case; however, a
memory read-protection violation can occur,

Affected: CC if (1)8_” =0; Trap: Fixed-point overflow
(EHL) and CC if (1)8_” £0

If (1)8_” =0, test halfword and set CC
If (1)8_” £0, EH + (1)8_] 1SET EHL and set CC

Condition code settings:

1 2 3 4 (ResultinEHL

- - 0 0 zero

- = 0 1 negative

- - 1 0 Dpositive

- 0 - - no fixed-point overflow
- 1 - - fixed-point overflow

- - nocarry from halfword
carry from halfword

—
}
1
1

Fixed-Point Arithmetic Instructions 43

If CC2 is set to 1 and the fixed~point arithmetic trap
mask (AM) is o 1, the computer traps to location X'43'
after the result is stored in the effective halfword loca-
tion; otherwise, the computer executes the next instruc-
tion in sequence. However, if MTH is executed in an
interrupt location, the condition code is not affected
and no fixed-point overflow trap can occur (see "Single-
Instruction Interrupts"),

MW MODIFY AND TEST WORD
(Word index alignment)

* 33 R X Reference address

01 2 3T¢ 5 8§ 718 % 10 iz 13 14 YS?‘G 17 18 19120 27 22 23124725 26 27128 29 30 31

If the value of the R field is nonzero, the high~order
bit of the R field (bit position 8 of the instruction
word) is extended 28 bit positions to the left, to form
a word with bit positions 027 of that word equal to
the high-order bit of the R field. This word is added
to the effective word and then (if no memory protec~
tion violation occurs) the sum is stored in the effective
word location and the condition code is set according
to the value of the resultant word. The sum is stored
regardless of whether or not overflow occurs. This
process allows modification of a word by any number
in the range -8 through +7, followed by a test.

If the value of the R field is zero, the effective word
is tested for being a zero, negative, or positive value.
The condition code is set according to the result of the
test, but the effective word is not affected. A memory
write-protection violation cannot occur in this case;

however, a memory read-protection violation can occur,

Affected: CC if (1)8_” =0; Trap: Fixed-point overflow
(EWL) and CC if (I)g_|| #0
If (1)8_” =0, test word and set CC

If (l)8_” £0, EW+1 EWL and set CC

8-11SE

Condition code settings:
12 4 Result in EWL

zero
negative

positive

no fixed-point overflow
fixed-point overflow
no carry from word
carry from word

| 1
— QO 1 '
I 1 -0 0O |w
I 1 O—=0

(=]
|
I
]

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to location X'43'
after the result is stored in the effective word location;
otherwise, the computer executes the next instruction

in sequence. However, if MTW is executed in an
interrupt location, the condition code is not affected
and no fixed-point overflow trap can occur (see “Single-
Instruction Interrupts").

44 Comparison Instructions

COMPARISON INSTRUCTIONS

The following comparison instructions are available to
SIGMA 6 computers:

Instruction Name Mnemonic
Compare Immediate ClI
Compare Byte CB
Compare Halfword CH
Compare Word Ccw
Compare Doubleword CcD
Compare Selective Cs

Compare With Limits in Register = CLR
Compare With Limits in Memory CLM

All SIGMA 6 comparison instructions produce a condition
code setting which is indicative of the results of the com-
parison, without affecting the effective operand in memory
and without affecting the contents of the designated register,

a COMPARE IMMEDIATE
(Immediate operand)

21 R Valve

01 2 314 5 6 718 9 10N 12 13 14 15176 17 18 9120 21 22 23124 25 26 27128 29 30 31

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the left, compares the 32-bit result with the contents of reg-
ister R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the results of the comparison.

Affected: CC2, CC3, CC4
®): D5 315

Condition code settings:

1 2 4 Result of Comparison

3
- - 0 0 equad
0

T register value less than immediate value

1

1
—_
(=]

register value greater than immediate
value

no 1-bits compare, (R) n (1)12-325E =0
one or more 1-bits compare,

R) n (1) _356 #0

If Clis indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to location X'40' with the
condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

* 71 R X Reference address

01 23745 6 718 ¢ 10 1213 14 15716 17 18 19‘20 21 22723124 25 28 27198 25 30 3i

COMPARE BYTE compares the contents of bit positions
24-31 of register R with the effective byte (with both bytes

treated as positive integer magnitudes) and sets the condi-
tion code according to the results of the comparison,

Affected: CC2, CC3, CC4
(R)24_3] : EB

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 equd

= = 0 1 register byte less than effective byte

- = 1 0 register byte greater than effective byte
- 0 - - nol-bits compare, (R)24-31n EB=0

- 1 - -

one ormore 1-bits compare,

(R)o4-31n EB#0

CH COMPARE HALFWORD
(Halfword index alignment)

* 51 R X Reference address

¢ 12 31456 718 9 10 nliz 13 14 15116 17 18 19120 21 27 23124 25 26 27128 29 30 31
COMPARE HALFWORD extends the sign of the effective half-
word 16 bit positions to the left, then compares the resultant
32-bit word withthe contentsofregisterR (with both words
treated assigned, fixed-poin’ quantities) and setsthe condi-
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4

(R) : EHgg

Condition code settings:

1 2 3 4 Result of Comparison

- - 0 0 |equa

- - 0 1 register word less than effective half-
word with sign extended

= - 1 0 register word greater than effective
halfword with sign extended

= 0 - - nol-bits compare, (R), EHSE =0

one or more 1-bits compare,

(R) n EHSE #0

Ccw COMPARE WORD
(Word index alignment)

* 31 R X

0 12 3Ta 5 6 718 9 10 iz 13 14 15116 17 1819720 21 22 23124 25 26 27128 29730 31

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed-
point quantities, and sets the condition code according to
the results of the comparison.

Affected: CC2, CC3,CC4
(R) : EW

Reference address

Condition code settings:

1 2 3 4 Result of Comparison
- - 0 0 equal
= - 0 1 register word less than effective word

1 2 3 4 Result of Comparison

= = 1 0 register word greater than effective word
- 0 - - nol-bits compare, (R) nEW =0

- 1 - - oneor more 1-bits compare, (R) nEW#0
cD COMPARE DOUBLEWORD

{Doubleword index alignment)

* 1 R X Reference address

0 1 2 3Ta 576 718 9 10 N1z 1312 15176 17 16 1120 31 23 23724 25 26 27126 29 30 30

COMPARE DOUBLEWORD compares the effective double-
word with the contents of registers R and Rul (with both
doublewords treated as signed, fixed-point quantities) and
sets the condition code according to the results of the com-
parison. If the R field of CD is an odd value, CD forms a
64-bit register operand (by duplicating the contents of reg-
ister R for both the 32 high-order bits and the 32 low-order
bits) and compares the effective doubleword with the 64-bit
register operand. The condition code settings are based on
the 64-bit comparison.

Affected: CC3, CC4

(R,Rul) : ED

Condition code settings:

1 2 3 4 Resultof Comparison

- = 0 0 equal

- = 0 1 register doubleword less than effective
doubleword

- = 1 0 register doubleword greater than effective
doubleword

cs COMPARE SELECTIVE

(Word index alignment)

* 45 R X

Reference Address

o 12 3i4 5 6 718 9 10 112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected by
alincorresponding bit positions of register Rul (mask). The
contentsof register R and the effective word are ignored in
those bit positions designated by a 0 in corresponding bit
positions of register Rul. The selected contents of register R
and the effective word are treated as positive integer mag-
nitudes, and the condition code is set according to the re-
sult of the comparison. If the R field of CS is an odd value,
CS compares the contents of register R with the logical prod-
uct (AND) of the effective word and the contents of register R,

Affected: CC3,CC4
If R is even: (R) n(Rul) : EW n(Rul)
If Risodd: (R) : EW n(R)

Condition code settings:

1 2 4 Results of Comparison under Mask in Ryl

- - 0 equdl
1 register word less than effective word
0 register word greater than effective word

(if R is even)

— OO |w

Comparison Instructions 45

CLR COMPARE WITH LIMITS IN REGISTERS
(Word index alignment)

L*L39!RX

o Te 9 90 1M1z 13 14 15116 17

Reference address

18 19120 21 22 23124 25 26 27178 29 30 3

COMPARE WITH LIMITS IN REGISTERS simultaneously com-
pares the effective word with the contents of register R and
with the contents of register Rul (with all three words treated
as signed fixed-point quantities), and sets the condition
code according to the results of the comparisons.

Affected: CC
(R) : EW, (Rul) : EW

Condition code settings:

1 2 4 Result of Comparison

contents of R equal to effective word
contents of R less than effective word
contents of R greater than effective word
contents of Rul equal to effective word
contents of Rul less than effective word
contents of Rul greater than effective word

1
}

I 00O [Ww
I OoO—-0o

— O QO I
O — 0O
|
]

am COMPARE WITH LIMITS IN MEMORY

(Doubleword index alignment)

* 19 R X

0 1 2 31458718 9 1C 1112 13 74 1506 17 18 19120 21727 23124 25 26 27128 29 30 37

Reference address

COMPARE WITH LIMITS IN MEMORY simultaneously com-
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
according to the results of the comparisons.

Affected: CC

(R): EDy 5. (R) +ED,, o

Condition code settings:

1 2 3 4 Resultof Comparison

= = 0 0 contents of R equal to most significant
word, (R) = ED0_3]

= = 0 1 contents of R less than most significant
word, (R) < EDO—SI

= = 1 0 contents of R greater than most signifi-
cant word, (R) > ED0_3]

0 0 - - contentsof R equal to least significant
word, (R) = ED32-63

0 1 - - contents of R less than least significant
word, (R) <ED,, -

10 - - contents of R greater than least signifi-

cant word, (R) > ED32_(>3

46 Logical Instructions

LOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding

bit between two operands; one operard is in register R and
the other operand is the effective word. The result of the
logical operation is loaded into register R,

OR OR WORD
{Word index alignment)

* 49 R X Reference address

0 1 2 3745 & 718 5 otz 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word are
both 0, a 0 remains in register R; otherwise, a 1 is placed in
the corresponding bit position of register R. The effective
word is not affected.

Affected: (R), CC3, CC4
(R) v EW R, where 0u0 =9, Oul=1,140=1,1u1=]

Condition code settings:

1 2 4 Result inR

3
- - 0 0 zero
0

I bit O of register Risa 1

p—

0 bit 0 of register R is a 0 and bit positions
1-31 of register R contain at least one |

EOR EXCLUSIVE OR WORD
(Word index alignment)

* 48 R X Reference address

0 1 2 3147576 T8 9 10 1119z 13 14 5116 17 18 Bl 7 3 23724725 26 27128 29 30 31

EXCLUSIVE OR WORD logically exclusive ORs the effective
word into register R. If corresponding bits of register R and
the effective word are different, a 1 is placed in the corre-
sponding bit position of register R; if the contents of the
corresponding bit positions are alike, a 0 is placed in the
corresponding bit position of register R. The effective word
is not affected.

Affected: (R), CC3, CC4

(RY@QEW —— R, where 0©0=0, 0@1 = 1,
100=1, 1@1=0
Condition code settings:
1 2 3 4 ResultinR
- = 0 0 zero
- - 0 1 bitOofregisterRisal
- - 1 0 bitOof register R is a 0 and bit positions

1-31 of register R contain at least one 1

AND AND WORD
(Word index alignment)

* 4B R X

Reference address

0 1 2 314 5 6 718 9 10 nl12 13 14 15116 17718 19120 21 22 23124 25 26 27128 25 30 31

AND WORD logically ANDs the effective word into register
R. If corresponding bits of register R and the effective word

are both 1, a 1 remains in register R; otherwise, a 0 is
placed in the corresponding bit position of register R. The
effective word is not affected.

Affected: (R), CC3, CC4
(R)n EW ——R, where 0n0=0, 0 nl=0,
1n0=0,1n1=

Condition code settings:

1 2 3 4 ResultinR
- - 0 0 zero
= - 0 1 bitOofregisterRisal

= - 1 0 bitOof register R is a 0 and bit positions
1-31 of register R contain at least one 1

SHIFT INSTRUCTIONS

The instruction format for logical, circular, and arithmetic
shift operations is:

S SHIFT
{Word index alignment)

* 25 R

0 12314 56 718 ¢ 101N

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift. Ifonly in-
direct addressing is called for in the instruction, bits 15-31
of the instruction are used to access the indirect word and
then bits 21-31 of the indirect word determine the type,
direction, and amount of the shift. If only indexing is
called for in the instruction, bits 21-23 of the instruction
word determine the type of shift; the direction and amount
of shift are determined by bits 25-31 of the instruction plus
bits 25-31 of the specified index register. If both indirect
addressing and indexing are called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
wordand then bits 21-23 of the indirect word determine the
type of shift; the direction and amount of the shiftare deter-
mined by bits 25-31 of the indirect word plus bits 25-31 of
the specified index register,

Bit positions 15-20 and 24 of the effective virtual address
are ignored. Bit positions 21, 22 and 23 of the effective
virtual address determine the type of shift, as follows:

21 22 23 Shift Type

0 0 0 |Logical, single register

0 0 1 Logical, double register

0 1 0 Circular, single register

0 1 1 Circular, double register
10 0 Arithmetic, single register
10 1 Arithmetic, double register
1 1 0 Undefined

| . 1 Undefined

Bit positions 25 through 31 of the effective virtual address are
a shift count that determines the direction and amount of the
shift. The shift count (C) is treated asa 7-bit signed binary

integer, with the high-order bit (bit position 25) as the sign
(negative integers are represented in two's complement form).
A positive shift count causes a left shift of C bit positions.
A negative shift count causes a right shift of |Cl bit posi-
tions. The value of C is within the range: -64 = C - +63.

All double-register shift operations require an even value for
the R field of the instruction, and treat registers R and Rul
as a 64-bit register with the high-order bit (bit position 0 of
register R) as the sign for the entire register. If the R field
of SHIFT is an odd value and @ double-register shift opera-
tion is specified, a register doubleword is formed by dupli-
cating the contents of register R for both the 32 high-order
bits and the 32 low-order bits of the doubleword. The shift
operation is then performed and the 32 high-order bits of the
result are loaded into register R,

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular left, and arithmetic left
shifts, the condition code is set as follows:

1 2 3 4 Result of Shift

0 - - - even number of 1's shifted off left end of
register R

1 - - - odd number of |'s shifted off left end of
register R

- 0 - - nooverflow on left shift

- 1 - - overflow on left shift

At the completion of logical right, circular right, and arith-
metic right shifts, the condition code is set as follows:

Logical Shift, Single Register

Reference address

fl 2 R X [="T0[6[0[] Count

0 1 2 374 56 778 9 10 11112 13 14 15116 17 18719120 21 22 23124 25 26 . 1268 79 30 51

If the shift count, C, is positive, the contents of register R
are shifted left C places, with 0's copied into vacated bit
positions on the right. (Bits shifted past Rg are lost.) If C
is negative, the contents of register R are shifted right ,Cl
places, with 0's copied into vacated bit positions on the
left. - (Bits shifted past R3y are lost.)

Affected: (R), CCl, CC2

Logical Shift, Double Register

Reference address

Y25 R | X [0[0[1f T Count

0 1 2314 5 ¢ 718 9 1011 1213 14 15116 17 18 19120 21 22 23124 25 26 2128 29 30 31

If the shift count, C, is positive, the contents of registers

R and Rul are shifted left C places, with 0's copied into
vacated bit positions on the right. Bits shifted past bit posi-
tion 0 of register Rul are copied into bit position 31 of reg-
ister R, (Bits shifted past Rg are lost.) If C is negative, the
contents of registers R and Rul are shifted right]C, places,

Shift Instructions 47

with O's copied into vacated bit positions on the left. Bits
shifted past bit position 31 of register R are copied into bit
position O of register Rul. (Bits shifted past Ruly) are lost.)

Affected: (R), (Rul), CC1, CC2

Circular Shift, Single Register

Reference address

*
25 R | X ST

FLOATING-POINT SHIFT

See "Floating-Point Arithmetic Instructions" for a definition
of floating-point numbers. The format for the floating-poind
shift instruction is:

_SF SHIFT FLOATING

(Word index alignment)

C v 2 374 5 ¢ 718 9 1w 112 13 14 1.5' 16 l} 18.]9‘20 21 22 23124 25 26 2128 29 30 31

If the shift count, C, is positive, the contents of registerR
are shifted left C places. Bits shifted past bit position 0
are copied into bit position 31. (No bits are lost.) If C
is negative, the contents of register R are shifted right ,C'
places. Bits shifted past bit position 31 are copied into
bit position 0. (No bits are lost.)

Affected: (R), CC1,CC2

Circular Shift, Double Register

N 25 R X Reference address
1] | Counr
O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the shift count, C, is positive, the confents of registers
R and Rul are shifted left C places. Bits shifted past bit
position O of register R are copied into bit position 31 of
register Rul. (No bits are lost.) If C is negative, the
contents of registers R and Rul are shifted right ,C' places.
Bits shifted past bit position 31 of register Rul are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Rul), CC1,CC2

Arithmetic Shift, Single Register

% 25 R X I Reference address
] ﬂOIO - Count
0 1 2 3Ta 56 718 9 1031112 13 14 15116 17 18 19120 21 22 23124 25 26 2128 29 30 31

If the shift count, C, is positive, the contents of register

R are shifted left C places, with 0's copied into vacated
bit positions on the right. (Bits shifted past Rq are lost.)
If C is negative, the contents of register R are shifted right
|CI places, with the contents of bit pesition O copied into
vacated bit positions on the left. (Bits shifted past R3jare
lost.)

Affected: (R), CCl, CC2

Arithmetic Shift, Double Register

Reference address

1]0] 1 Count

21 22 23724 25 26 27128 29 30 31
If the shift count, C, is positive, the contents of registers
R and Rul are shifted left C places, with 0's copied into
vacated bit positions on the right. Bits shifted past bit
position 0 of register Rul are copied into bit position 31
of register R. (Bits shifted past Ry are lost.) If C is nega-
tive, the contents of registers R and Rul are shifted right |C|
places, with the contents of bit position O of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi-
tion O of register Rul. (Bits shifted past Rulgy are lost.)

Affected: (R), (Rul), CC1,CC2

* 25 R X

0 1 2 314 5 6 718 9 10 Nli2 13 14 15

48 Shift Instructions

‘0123|456789|0H|2|3|415

* .24 R X

If indirect addressing or indexing is called for in the instruction
word, the effective virtual address is computed as for the in-
struction SHIFT except that bit position 23 of the effective
virtual address determines the type of shift. Ifbit 23 is a0, the
contents of register R are treated as a short-format floating-
point number; if bit 23 is a1, the contents of registers R and
Rul are treated as a long-format floating-point number.

The shift count, C, in bit positions 25 through 31 of the
effective virtual address determines the amount and direc-
tion of the shift, The shift count is treated as a 7-bit
signed binary integer, with the high-order bit (bit position
25) as the sign (negative integers are represented in two's
complement form).

The absolute value of the shift count determines the number
of hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the floating-
point number ‘is shifted left; if the count is negative, the
number is shifted right.,

SHIFT FLOATING loads the floating-point number from the
register(s) specified by the R field of the instruction into a
set of internal registers. If the number is negative, it is
two's complemented. A record of the original sign is re-
tained. The floating-point number is then separated into

a characteristic and a fraction, and CC1 and CC2 are both
reset to O's,

A positive shift count produces the following left shift
operations:

1. If the fraction is normalized (i.e., is less than 1 and is
equal to or greater than 1/16), or the fraction is all
0's, CCl isset to 1.

2. If the fraction field is all O's, the entire floating-point
number is set to all 0's (true zero), regardless of the
sign and the characteristic of the original number.

3. If the fraction is not normalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions)to
the left and the characteristic field is decremented by
1. Vacated digit positions at the right of the fraction
are filled with hexadecimal 0's.

If the characteristic field underflows (i.e., is all 1's
as the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not under-
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal-
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit

positions, whichever occurs first. (Any two, or all
three, of the terminating conditions can occur
simultaneously.)

4. At the completion of the left shift operation, the floating-
point result is loaded back into the general register(s).
If the number was originally negative, the two's com-
plement of the resultant number is loaded into the gen-
eral register(s).

5 The condition code settings following a floating-point
left shift are as follows:

1 2 3 4 Result

-~ - 0 0 true zero (all 0'%)

- - 0 1 negative

- = 1 0 Dpositive

0 0 - - Cdigits shifted (fraction unnormal-
ized, no characteristic underflow)

1 - - - fraction normalized (includes true
zero)

- 1 - - characteristic underflow

A negative shift count produces the following right shift op-
erations (again assuming that negative numbers are two's
complemented before and atter the shift operation):

1. The fraction field is shifted 1 hexadecimal digit posi-
tion to the right and the characteristic field is incre-
mented by 1. Vacated digit positions at the left are
filled with hexadecimal 0's,

2. If the characteristic field overflows (i.e., is all 0's as
the result of being incremented), CC2 is set to 1. How-
ever, if the characteristic field does not overflow, the
shift process (shift fraction, and increment character-
istic) continues until the characteristic field overflows
or until the fraction is shifted right |C| hexadecimal
digit positions, whichever occurs first. (Both termin-
ating conditions can occur simultaneously.)

3. If the resultant fraction field is all 0's, the entire
floating-point number is set to all 0's (true zero), re-
gardless of the sign and the characteristic of the origi-
nal number.

4. At the completion of the right shift operation, the
floating=-point result is loaded back into the general
register(s). If the number was originally negative, the
two's complement of the resultant number is loaded
into the general register(s).

|
5. The condition code settings following a floating-point

right shift are as follows:

1 2 3 4 Result

= - 0 0 true zero (all zeros)

- - 0 1 negative

- - 1 0 Dpositive

6o 0o - -]Cl digits shifted (no characteristic
overflow)

0 1 - - characteristic overflow

Floating Shift, Single Register

Reference address

L RO X O[] Count

0 1 2 3147576 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27126 29

The short-format floating-point number in register R is shifted
according to the rules established above for floating-point
shift operations.

Affected: (R), CC

Floating Shift, Double Register

R Reference address

X T T Count

8 9 10 NT12 93 14 1516 17 18 19120 21 22 22124 25 26 27128 29 3¢ 31

* 24

0 1 2 314 56 7

The long-format floating-point number in registers R and Rul

is shifted according to the rules established above for floating-
point shift operations. (If the R field of the instruction word

is an odd value, a long-format floating-point number is gen-
erated by duplicating the contents of register R, and the 32
high-order bits of the result are loaded into register R.)

Affected: (R), (Rul), CC

CONVERSION INSTRUCTIONS

The following two conversion instructions are provided by the
SIGMA 6 computer:

Instruction Name Mnemonic

Convert by Addition CVA
Convert by Subtraction CVs

These two conversion instructions can be used to accomplish
bidirectional translation between binary code and any other
weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion table of 32 words,
containing weighted values for each bit position of register
Rul. The 32 words of the conversion table are considered to
be 32-bit positive quantities, and are referred to as conver-
sion values. The intermediate results of these instructions
are accumulated in internal CPU registers until the instruc-
tion is completed; the result is then loaded into the appro-
priate general register. Both instructions use a counter (n)
that is set to O at the beginning of the instruction execution
and is incremented by 1 with each iteration, until a total of
32 iterations have been performed.

If an interrupt or memory protection violation trap occursduring
the execution of either instruction, the instruction sequence is
aborted (without having changed the contents of register R or
Rul)andrestarted (at the beginning of the instruction sequence)
after the interrupt or trap routine is processed.

CVA CONVERT BY ADDITION
(Word index alignment)

* 29 R X Reference address

0 1 2 374 5 6 718 9 10 11112 13 14 1519617 18719120 21 22 23124 25 26 27128 29 30 3.

CONVERT BY ADDITION initially clears the internal A reg-

ister and sets an internal counter (n) to 0. If bit position n

Conversion Instructions 49

of register Rul contains a 1, CVA adds the nth conversion
value (contents of the word location pointed to by the ef-
fective address plus n) to the contents of the A register,
accumulates the sum in the A register, and increments n
by 1. If bit position n of register Rul contains a 0, CVA
only increments n. If n is less than 32 after being incre-
mented, the next bit position of register Rul is examined,
and the addition process continues through n equal to 31;
the result is then loaded into register R. If, on any itera-
tion, the sum has exceeded the value 232-1, CC1 is set to
1; otherwise, CC1 is reset to 0.

Affected: (R), CCl, CC3, CC4
0 A, 0 n

If (RU])n =1, then (EWL + n) + (A) —A, n+ 1
If (Ru])n =0, thenn+ 1

n

n

If n <32, repeat; otherwise, (A} ——R and continue to
next instruction

Condition code settings:

1 2 3 4 ResultinR

- - 0 0 zero

- = 0 1 bitOofregisterRisal

= = 1 0 bitOof register R is a 0 and bit positions
1-31 of register R contain at least one 1

0 - - - sumiscorrect (less than 232)

sum is greater than 232 -1

s CONVERT BY SUBTRACTION
(Word index alignment)

* 28 R X Reference address

0 1 2 3T4 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23[24 25 26 27728 29 30 31

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis-
ter, and sets an internal counter (n) to 0. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion value (the contents of the word location
pointed to by the effective address plus n) is equal to or less
than the current contents of the A register, CVS increments
n by 1, adds the two's complement of the nth conversion
value to the contents of the A register, stores the sum in

the A register, and stores a 1 in bit position n of the B reg~
ister. If the nth conversion value is greater than the current
contents of the A register, CVS only increments n by 1. If
n is less than 32 after being incremented, the next con-
version value is compared and the process continues through
n equal to 31; the remainder in the A register is loaded into
register R, and the converted quantity in the B register is
loaded into register Rul.

Affected: (R), (Rul), CC3, CC4
(R) A, 0 B, 0 n

If (EWL + n) < (A) then A - (EWL + n)
1 By n+ 1 n-

If (EWL + n) > (A) thenn + 1

A'

50 Floating=Point Arithmetic Instructions

If n <32, repeat; otherwise, (A) — R, (B)
continue to the next instruction

Rul and

Condition code settings:

1 2 3 4 ResultinRul
- = 0 0 zero
- = 0 1 bitOof register Rul isa 1

—

0 bit 0 of register Rul is a O and bit posi-
tions 1-31 of register Rul contain at
least one 1

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The following floating-point arithmetic instructions are
available as optional SIGMA 6 instructions:

Instruction Name Mnemonic
Floating Add Short FAS
Floating Add Long FAL
Floating Subtract Short FSS
Floating Subtract Long FSL
Floating Multiply Short FMS
Floating Multiply Long FML
Floating Divide Short FDS
Floating Divide Long FDL

FLOATING-POINT NUMBERS

SIGMA 6 accommodates two number formats for floating-
point arithmetic: short and long. A short-format floating-
point number consists of a sign (bit 0), a biased!, base 16
exponent, which is called a characteristic (bits 1-7), and

a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number consists of a short-format floating-
point number followed by an additional eight hexadecimal
digits of fractional significance and occupies a doubleword
memory location or an even-odd pair of general registers.

A SIGMA 6 floating-point number (N) has the following
formct:

Character- .
istic (C) | Fraction (F)

0 1 2 3T4 s 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 25 27126 35 30 37

+

Extra Fractional Precision

32 33 34 35136737 38 39140 41 42 43143 45 46 47148 49 50 517152 53 54 55|L56 57 58 59760 81 62 63

A floating-point number (N) has the following formal
definition:

1. N=Fx 16564 where F =0 or
1676 < |F =1 (short format) or
16714 < |F| <1 (long format)
and 0< C =127

"he bias value of 4014 is added to the exponent for the
purpose of making it possible to compare the absolute mag-
nitude of two numbers, i.e., without reference to a sign
bit. This manipulation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

28]

Apositive floating=-point number with a fraction of zero
and a characteristic of zero is a "true" zero. A positive
floating-point number with a fraction of zero and a non-
zero characteristic is an "abnormal" zero. For floating-
point multiplication and division, anabnormal zero is
treated as a true zero. However, for addition and
subtraction, an abnormal zero is treated the same as
any nonzero operand,

3. Apositive floating-point number is normalized if and
only if the fraction is contained in the interval
1/16 <F <1
4. A negative floating-point number is the two's comple-
ment of its positive representation,
5. A negative floating=point number is normalized if and

only if its two's complement is a normalized positive
number,

By this definition, a floating-point number of the form
Txxx xxxx 11110000 .., 0000
is normalized, and a floating-point number of the form

Ixxx xxxx 0000 0000 ... 0000

is illegal and, whenever generated by floating-point in-
structions, is converted to the form

Tyyy yyyy 1111 0000 ... 0000

where yy ... yis 1 less than xx ... Table 6 contains

examples of floating-point numbers.

MODES OF OPERATION

SIGMA 6 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits
are identified as FS (floating significance), FZ (floating
zero), and FN (floating normalize), and are contained
in bit positions 5, 6, and 7, respectively, of the program
status doubleword (PSD5_7).

x.

The floating-point mode is established by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name Mnemonic
.Load Conditions and Floating Control LCF

Load Conditions and Floating Control

Immediate LCFI

Load Program Status Doubleword LPSD
Exchange Program Status Doubleword XPSD

The floating-point mode control bits are stored by executing
either of the following instructions:

Instruction Name Mnemonic
Store Conditions and Floating Control STCF
XPSD

Exchange Program Status Doubleword

Table 6. Floating-Point Number Representation

Decimal Number Short Floating -point Format Hexadecimal Value
+ C F

+1673 12724 O 1ML TN AT U TN 1 10 7F FFRERF
+(|6+3)(5/]6) 0 100 0011 0101 0000 0000 0000 0000 0000 43 500000
+(16-3)(209/256) 0 011 1101 1101 0001 0000 0000 0000 0000 3D D10000
+(|6-63)(2047/4096) 0 000 0001 OTTT 1111 1111 0000 0000 0000 01 7FF000
+(16% (1 /16) 0 000 0000 0001 0000 0000 0000 0000 0000 00 100000
0 (called true zero) 0 000 0000 0000 0000 0000 0000 0000 0000 00 000000
~16™% 1 16) T 111 1111 1111 0000 0000 0000 0000 0000 FF FOOO0O
-(]6-63)(2047/4096) 1 111 1110 1000 0000 0001 0000 0000 0000 FE 801000
-(1673)(209/256) 1100 0010 0010 1111 0000 0000 0000 0000 C2 2FO000
-(16"%)(5/16) 1011 1100 1011 0000 0000 0000 0000 0000 BC BOOOOO
16731 -2% 1 000 0000 0000 0000 0000 0000 0000 0001 80 0000OI

Special Case:

-(]6e)(l) 1 B 0000 0000 0000 0000 0000 0000

is changed to
-(]6e+])(]/ 16) 1 e+ 1 1111 0000 0000 0000 0000 0000
" whenever generated as the result of a floating-point instruction,

Floating~Point Arithmetic Instructions 51

UNIMPLEMENTED FLOATING-POINT INSTRUCTIONS NS

If the optional floating-point instruction set is not imple-
mented in the computer and execution of a floating-point
arithmetic instruction is attempted, the computer uncondi-
tionally aborts execution of the instruction (at the time of
operation code decoding). The computer then traps to lo-
cation X'41', with the contents of the condition code and
all general registers unchanged. Location X'41' is the
“unimplemented instruction” trap location.

FLOATING-POINT ADD AND SUBTRACT

The floating normalize (FN), floating zero (FZ), and floating
significance (FS) mode control bits determine the operation of
floating-point addition and subtraction (if characteristic
overflow does not occur) as follows:

FN Floating normalize:

FN =0 The results of additions and subtractions are
to be postnormalized. If characteristic under-
flow occurs, if the result is zero, or if more
than two postnormalization hexadecimal shifts
are required, the settings for FZ and FS de-
termine the resultant action. If none of the
above conditions occur, the condition code
is set to 0010 if the result is positive or to
0001 if the result is negative.

FN =1 Inhibit postnormalization of the results of ad-
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op-
eration. If the result is zero, the result is
set to true zero and the condition code is set
to 0000. If the result is positive, the con-
dition code is set to 0010. If the result is
negative, the condition code is set to 0001,

FZ Floating zero: (applies only if FN = 0)

FZ =0 If the final result of an addition or subtrac-
tion operation cannot be expressed in normal-
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in which case the result is set equal to true
zero and the condition code is set to 1100.
(Exception: if a trap results from significance
checking with FS =1 and FZ = 0, an under-
flow generated in the process of postnormal-
izing is ignored,)

FZ =1 Characteristic underflow causes the computer
to trap to location X'44' with the contents of
the general registers unchanged. 1f the result
is positive, the condition code is set to 1110,
If the result is negative, the condition code
is set to 1101,

FS Floating significance: (applies only if FN = 0)
FS =0 Inhibit signifiance trap. If the result of an

addition or subtraction is zero, the result is

52 Floating-Point Arithmetic Instructions

set equal to true zero, the condition code is
set to 1000, and the computer executes the
next instruction in sequence. If more than
two hexadecimal places of postnormalization
shifting are required anc characteristic under-
flow does not occur, the condition code is set
to 1010 if the result is positive, or to 1001 if
the result is negative; then, the computer exe-
cutes the next instruction in sequence. (Ex-
ception: if characteristic underflow occurs
with FS =0, FZ determines the resultant action)

FS =1 The computer traps to location X'44" if more
than two hexadecimal places of postnormal-
ization shifting are required or if the result is
zero. The condition code is set to 1000 if the
result is zero, to 1010 if the result is positive,
or to 1001 if the result is negative; however,
the contents of the general registers are not
changed. (Exception: if a trap results from
characteristic underflow with FZ = 1, the re-
sults of significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps to
location X'44' with the general registers unchanged and the
condition code set to 0110 if the result is positive, or to
0101 if the result is negative.

FLOATING-POINT MULTIPLY AND DIVIDE

The floating zero (FZ) mode control bit alone determines
the operation of floating-point multiplication and division
(if characteristic overflow does nat occur and division by
zero is not attempted) as follows:

FZ Floating zero:

FZ =0 If the final result of a multiplication or divi-
sion operation cannot be expressed in normal-
ized form because of the characteristic being

. reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the condition code is set to 1100.
If underflow does not occur, the condition code
is set to 0010 if the result is positive, to 0001
if the result is negative, or to 0000 if the result
is zero.

FZ =1 Underflow causes the computer to trap to loca-
tion X'44' with the contents of the general
registers unchanged. The condition code is
set to 1110 if the result is positive, or to 1101
if the result is negative. If underflow does
not occur, the resultant action is the same
as that for FZ =0,

If the divisor is zero in a floating-point division, the com-
puter always traps to location X'44' with the general reg-
isters unchanged and the condition code set to 0100. [f
characteristic overflow occurs, the computer always traps
to location X'44" with the general registers unchanged and
the condition code set to 0110 if the result is positive, or
to 0101 if the result is negative.

CONDITION CODES FOR FLOATING-POINT INSTRUCTIONS

The condition code settings for floating-point instructions
are summarized in Table 7. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
characteristic, not to any "intermediate" value.

2. If o floating-point operation results in a trap, the
original contents of all general registers remain
unchanged.

3. All shifting and truncation are performed on absolute
magnitudes. If the fraction is negative, then the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index alignment, optional)

FAL FLOATING ADD LONG
{Doubleword index alignment, optional)

Reference address

* 1D R X

* 3D R X Reference address

0 v 2 3Ta 56 718 ¢ 1011112 13 14 15116 1718 19120 21 22 23124725 26 27128 29 30 31

The effective word and the contents of register R are loaded
into a set of internal registers and a low-order hexadecimal
zero (guard digit) is appended to both fractions, extending

them to seven hexadecimal digits each. FAS then forms the
floating-point sum of the two numbers. If no floating-point
arithmetic fault occurs, the sum is loaded into register Ras

a short-format floating-point number.

Affected: (R), CC
(R) + EW ——R

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

0 12 3Ta 5 7778 o 10 111 13 14 15106 17 16 19120 21 27 23124 70 26 o Tom mo s

The effective doubleword and the contents of registers R and
Rul are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING ADD
SHORT (FAS) except that the fractions to be added are each
14 hexadecimal digits long, guard digits are not appended

" to the fractions, and R must be an even value for correct re-

sults. If no floating-point arithmetic fault occurs, the sum
is loaded into registers R and Rul as a long-format floating-
point number,

Affected: (R), (Rul), CC
(R,Rul) + ED — R, Rul

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

FSS FLOATING SUBTRACT SHORT
(Word index alignment, optional)

* 3C R X
0 v 2 314 56 718 9 10 11112 1518 Sl v 8wl 5t e
The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point arith-
metic fault occurs, the difference is loaded into register R
as a short-format floating-point number,

Affected: (R), CC
R) - EW — R

Reference address

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

Table 7. Condition Code Settings for Floating-Point Instructions

Condition Code Meaning if no trap to location X'44' occurs ' Meaning if trap to location X'44' occurs
1 2 3 4
0 0 0 o Ax0, O/A, or -A + A® with FN=1 I *®
0 0 0 1 | N<oO nomatl
0 0 1 0 | N>0 results
0 0 @ divide by zero
0 0 1 * overflow, N <0 , always trapped
0 P 0 overflow, N >0

0O 0 0 -A + ACD -A+ A

3{1 0o 0 1 N<0O|>2 postnormcl-} FS$=0, FN=0, and N<Q0)]>2 posfnormol—] FS=1, FN=0, and no

o 1 o N>0 izing shifts | no underflow N>0 izing shifts | underflow with FZ=1
T 1 0 o underflow with FZ=0 and no trap by FS=1 @ *
1 T 0 1 * underflow, N <0 I FZ=1
1 1 1 0 * underflow, N >0

Notes: @ result set to true zero
@ "*"indicates impossible configurations
@ opplies to add and subtract only where FN=0

Floating-Point Arithmetic Instructions 53

FSL FLOATING SUBTRACT LONG

(Doubleword index alignment, optional)

* 1C R

X Reference address
0 1 2 314 5 & 7~8.9 IOHAIZHM 15116 17 1 19120 21722 23124 25 6 27128 29 30 31

The effective doubleword and the contents of registers R and
Rul are loaded into a set of internal registers,

FLOATING SUBTRACT LONG forms the two's complement
of the effective doubleword and then operates identically
to FLOATING ADD LONG (FAL). If no floating-point
arithmetic fault occurs, the difference is loaded into reg-
isters R and Rul as a long~format floating-point number.

Affected: (R), (Rul), CC
(R, Rul) —ED —R, Rul

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

FMS FLOATING MULTIPLY SHORT
(Word index alignment, optional)

* 3F R X Reference address

Affected: (R), (Rul), CC
(R, Rul) x ED

Traps: Unimplemented in-
R, Rul struction, floating-
point arithmetic fault

FDS FLOATING DIVIDE SHORT
(Word index alignment, optional)

"1 3E R X

Reference address l
0 Y 2 314 5 & 7 8 9 10N |21§ 14 151617 18 9120 20 22232‘2526172329$3|

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and both
numbers are then prenormalized (if necessary). FLOATING
DIVIDE SHORT then forms a floating-point quotient with o
6~digit, normalized hexadecimal fraction. If no floating-

point arithmetic fault occurs, the quotient is loaded into

register R as a short-format floating-point number.

Affected: (R), CC
(R) +EW — R

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

FDL FLOATING DIVIDE LONG

(Doubleword index alignment, optional)

01 2314 576 718 9 1017 12‘13|4|5>|1_61718|9202|22232425262725293031

The effective word (multiplier) and the: contents of register
R (multiplicand) are loaded into a set of internal registers,
and both numbers are then prenormalized (if necessary).
The product of the fractions contains 12 hexadecimal digits,
If no floating-point arithmetic fault occurs, the product is
loaded into register R as a properly truncated short-format
floating—point number,

The result of floating=multiply is always postnormalized.
At most, one place of postnormalizing shift may be required.
Truncation takes place after postnormalization.

Affected: (R), CC
(R) x EW —— R

Traps: Unimplemented in-
struction, floating-
point arithmetic fault

FML FLOATING MULTIPLY LONG
(Doubleword index alignment, optional)

* 1F R X Reference address

01 2 37475 6 718 9 10 iz 1314 15118 75 8 1913030 22 23124725 26 27128 29 30 31

The effective doubleword (multiplier) and the contents of
registers R and Rul (multiplicand) are loaded into a set of
internal registers, FLOATING MULTIPLY LONG then
operates identically to FLOATING MULTIPLY SHORT (FMS),
except that the multiplier and the multiplicand fractions are
each 14 hexadecimal digits long, the product fraction is 28
hexadecimal digits long, and R must be an even value for
correct results, If no floating=point arithmetic fault occurs,
the postnormalized product is truncated to a long~format
floating=point number and loaded into registers R and Rul.

54 Decimal Instructions

* 1E R X Reference address
0123'456789!01]12!31415;16!7 w20 21 3124 6 27 1

The effective doubleword (divisor) and the contents of regis-
ters R and Rul (dividend) are loaded into a set of internal
registers, FLOATING DIVIDE LONG then operates identi-
cally to FLOATING DIVIDE SHORT (FDS), except that the
divisor, dividend, and quotient fractions are each 14 hexa-
decimal digits long, and R must be an even value for correct
results. If no floating-point arithmetic fault occurs, the
quotient is loaded info registers R and Rul as o long-format
floating-point number.,

Affected: (R), (Rul), CC
(R, Rul) + ED — R, Rul

Traps: Unimplemented in-
struction, floating~
point arithmetic fault

DECIMAL INSTRUCTIONS

The following instructions comprise the standard decimal in-
struction set:

Instruction Name Mnemonic
Decimal Load DL
Decimal Store DST
Decimal Add DA
Decimal Subtract DS
Decimal Multiply DM
Decimal Divide DD
Decimal Compare DC
Decimal Shift Arithmetic DSA
Pack Decimal Digits PACK
Unpack Decimal Digits UNPK

Edit Byte String (described under EBS
Byte String Instructions)

PACKED DECIMAL NUMBERS

All SIGMA 6 decimal arithmetic instructions operate on
packed decimal numbers, each consisting of from 1 to 31
decimal digits (in absolute form) plus a decimal sign. A
decimal digit is a 4-bit code in the range 0000 through 1001,
where 0000 = 0, 0001 =1, 0010 =2, 0011 = 3, 0100 = 4,
0101 =5, 0110=6, 0111 =7,1000 = 8, and 1001 =9, A
positive decimal sign is a 4-bit code of the form: 1010(X'A"),
1100(X'C'), T110(X'E'), or 1111 (X'F"). A negative decimal
sign is a 4-bit code of the form: 1011(X'B') or 1101 (X'D").
However, the decimal sign codes generated for the result of
a decimal instruction are: 1100 (X'C’) for positive results,
and 1101 (X'D') for negative results. The format of packed
decimal numbers is:

digit | digit | digit | digit g digit | sign

12 314 5 6 7 0 1 2 374 5 6 7 0 1 2 314 5 6 7

For the decimal arithmetic instructions, a packed decimal
number must occupy an integral number (1 through 16) of
consecutive bytes. Thus, a decimal number must containan
odd number of decimal digits, the high-order digit (zero or
nonzero) of the number must be in bit positions 0-3 of the
first byte, the decimal sign must be in bit positions 4~7 of
the last byte, and all decimal digits and the decimal sign
must be 4-bit codes of the fcrm described above.

ZONED DECIMAL NUMBERS

In zoned decimal format, a single decimal digit is contained
within bit positions 4-7 of a byte, and bit positions 0-3 of
the byte are referred to as the "zone" of the decimal digit.
A zoned decimal number consists of from 1 to 31 bytes, with
the decimal sign appearing as the zone for the last byte, as
follows:

zone | digit | zone | digit §§ sign | digit

T 1 2 314 5 & 7

0O 1 2 314 5 6 7 0 1 2 314 5 6 7

A decimal number can be converted from zoned to packed
format by means of the instruction PACK DECIMAL DIGITS.
A decimal number can be converted from packed to zoned
format by means of the instruction UNPACK DECIMAL
DIGITS.

DECIMAL ACCUMULATOR

All decimal arithmetic instructions imply the use of registers
12 through 15 of the current register bank as the decimal ac-
cumulator, and registers 12 through 15 are treated asasingle
16-byte register. The entire decimal accumulator is usedin
every decimal arithmetic instruction.

DECIMAL INSTRUCTION FORMAT

The general format of a decimal instruction is as follows:

x| Operation L X Reference address
Code

O 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The indirect address bit (position 0), the operation code
(positions 1-7), the index field (12-14), and the reference
address field (15-31) all have the same functions for the
decimal instructions as they do for any other SIGMA 6 byte
addressing instruction, However, bit positions 8-11 of the
instruction word do not refer to a general register; instead,
the contents of this field (designated by the character "L")
designate the length, in bytes, of a packed decimal num-
ber, (If L =0, a length of 16 bytes is assumed.)

ILLEGAL DIGIT AND SIGN DETECTION

Prior to executing any decimal instruction, the computer
checks all decimal operands for the presence of illegal dec-
imal digits or illegal decimal signs. For all decimal arith-
metic instructions except DECIMAL MULTIPLY and DECI-
MAL DIVIDE, an illegal decimal digit is a sign code (i.e.,
in the range X'A' through X'F') that appears anywhere ex-
cept in bit positions 4-7 of the least significant byte (the
sign position) of the packed decimal number; an illegal
decimal sign is a digit code (i.e., in the range X'0' through
X'9') that appears in the sign position of the packed deci-
mal number,

For the instructions DECIMAL MULTIPLY and DECIMAL
DIVIDE, the effective decimal operand is checked for
illegal digits or signs as above. However, the operand in
the decimal accumulator is checked to verify that there is
at least one legal decimal sign code somewhere in the num-
ber. (This type of check is a result of the interruptibility
of these instructions, which may leave the decimal accumu-
lator with a partially~completed result containing an internal
sign code,)

If an illegal digit or sign is detected, the computer uncon-
ditionally aborts the execution of the instruction (at the
time that the illegal digit or sign is detected), sets CC1 to 1
and -esets CC2 to 0. If the decimal arithmetic fault trap
mask (bit position 10 of the program status doubleword)
is a 0, the computer then executes the next instruction in
sequence; however, if the decimal arithmetic fault trap
mask (PSD]q) is a 1, the computer traps to location X'45'.
In either case, the contents of the decimal accumulator,
the effective decimal operand, CC3, and CC4 remain
unchanged.

OVERFLOW DETECTION

Arithmetic overflow can occur during execution of the fol-
lowing decimal instructions:

DECIMAL ADD: overflow occurs when the sum of the two
decimal numbers exceeds the 31-digit ca?ocify of the
decimal accumulator (+1031 = 1 to - 1031 + 1),

DECIMAL SUBTRACT: overflow occurs when the difference
between the two decimal numbers exceeds the 31-digit

capacity of the decimal accumulator.

Decimal Instructions 55

DECIMAL DIVIDE: overflow occurs either when the divisor
is zero, or when the dividend is greater than 14 digits in
length and the absolute value of the significant digits to
the left of the 15th digit position (counting from the right)
is greater than or equal to the absolute value of the
divisor,

If arithmetic overflow occurs during execution of DECIMAL
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com-
puter unconditionally aborts execution of the instruction (at
the time of overflow detection), resets CC1 to 0, and sets’
CC2to 1. Then, if the decimal arithmetic fault trap mask
(PSD0) is a 1, the computer traps to location X'45'; if the
decimal arithmetic fault trap mask is a 0, the computer exe-
cutes the next instruction in sequence. In either case, the
contents of the decimal accumulator, memory storage, CC3,
and CC4 remain unchanged.

DECIMAL INSTRUCTION NOMENCLATURE

For the purpose of abbreviating the instruction descriptions
to follow, the symbolic term "DECA" is used to represent
the decimal accumulator, and the symbolic term "EDO" is
used to represent the effective decimal operand of the in-
struction. For the instructions DECIMAL LOAD, DECIMAL
ADD, DECIMAL SUBTRACT, DECIMAL MULTIPLY, DECI-
MAL DIVIDE, and DECIMAL COMPARE, the effective dec-
imal operand is a packed decimal number that is "L" bytes
in length, where Listhe numeric value of bit positions 8-11
of the instruction word, and a value of 0 for L designates
16 bytes. The effective byte addresses of these instructions
point to the byte location that contains the most significant
byte (high-order digits) of the decimal number, and the ef-
fective byte address plus L-1 (where L =0 = 16) points to
the least significant byte (low-order digit and sign) of the
decimal number. Thus, for these instructions, the effective
decimal operand (EDO) is the contents of the byte string
that begins with the effective byte location, is L bytes in
length, and ends with the effective byte location plus L-1,

CONDITION CODE SETTINGS

All decimal instructions provide condition code settings,
using CCl toindicate whether or not an illegal digit or sign
hasbeen detected, and CC2 to indicate whether or not over-
flow has occurred. Most (but notall) of thedecimal instruc-
tions provide condition code settings, using CC3 and CC4 to
indicate whether the decimal number in the decimal accumu-
lator is zero, negative, or positive, as follows:

CC3 CC4 Result in DECA

0 0 zero — the decimal accumulator contains a
positive or negative decimal sign code in the
4 low-order bit positions; the remainder of
the decimal accumulator contains all 0's.

0 i negative — the decimal accumulator contains

a negative decimal sign code in the 4 low-
order bit positions; the remainder of the deci-
mal accumulator contains at least one nonzero
decimai digit.

56 Decimal Instructions

CC3 CC4 Result in DECA

1 0 positive — the decimal accumulator contains
a positive decimal sign code in the 4 low-
order bit positions; the remainder of the dec-
imal accumulator contains at least one
nonzero decimal digit.

DL DECIMAL LOAD

(Byte index alignment)

* 7E L X Reference address

0 Vv 2 374 56 718 9 1011112 13 14 15116 17 718 19120 21 22 23124 25 26 27128 20 38 o7

If no illegal digitorillegal sign is detected in the effective
decimal operand, DECIMAL LOAD expands the effective
decimal operand to 16 bytes (31 digits + sign) by appending
high-order 0's, and then loads the expanded decimal num-

ber into the decimal accumulator, If the result in the decimal
accumulator is zero, the converted sign remains unchanged,

Affected: (DECA), CC
(EBL to EBL+ L-1)—— DECA

Traps: Decimal arithmetic

Condition code settings:

1 2 3 4 ResultinDECA
1.0 - - llegal digit or sign detected, instruction
aborted
0 zero no illegal digit or illegal
0 1 negative sign detected, instruction
t
0 1 0 positive cc?mple ed

DST DECIMAL STORE
(Byte index alignment)

* 7F L X Reference address

0 1 2 37475 6 718 9 10 11112 13 14 15116 17 18 15120 21 22 23124 25 36 27126 5 30 37

If no illegal digit or sign is detected in the decimal ac-
cumulator, DECIMAL STORE stores the low-order L bytes
of the decimal accumulator into memory from the effec~
tive byte location to the effective byte location plus L-1,
If the decimal accumulator contains more significant in-
formation than is actually stored (i.e., at least one non-
zero digit was not stored), CC2 is set to 1; otherwise
CC2 is reset to 0. If the result in memory is zero, the
converted sign remains unchanged.

Affected: (EBL to EBL +L-1), Traps: Decimal arithmetic
CC1, Cc2

(DECA) low-order bytes EBL to EBL+L-1

Condition code settings:

1 2 3 4
10 - -

Result of DST

illegal digit or sign detected, instruction
aborted

Result of DST

0 0 - - allsignificant in-
formation stored no illegal digit or
0 1 - - somesignificant illegal sign detec-

ted, instruction

information not
completed

stored

DA DECIMAL ADD
(Byte index alignment)

J

* 79 L X

O 1 2 aTdT5Te 718 § 10 1Tz 1314 15116 17 78 19120721722 23124 25 26 27128 2 30 31

Reference address

If no illegal digit or sign is detected in the effective deci-
mal operand or in the decimal accumulator, DECIMAL ADD
expands the effective decimal operand to 16 bytes (31 digits
plus sign) by appending high~order 0's, algebraically adds
the expanded decimal number to the contents of the entire
decimal accumulator, and then loads the sum into the deci-
mal accumulator. If the result in the decimal accumulator
is zero, the resulting sign is forced to the positive form.

Overflow occursifthe sum exceeds the capacity of the deci-
mal accumulator (i. e, , if the absolute value of the sum is equal
to or greater than 103), inwhichcase CCl isreset to 0, CC2
issettol, and the instruction aborted with the previous con-
tents of the decimal accumulator, CC3 and CC4 unchanged.

Affected: (DECA), CC
(DECA) + EDO —~ DECA

Traps: Decimal arithmetic

Condition code settings:

1 2 3 4 ResultinDECA
10 - - illegal digit or
*ign defected instruction aborted
0 1 - - overflow
0 0 0 0 zero no illegal digit or sign
0 0 o0 1 negative detected, no overflow,
0 0 1 0 Dpositive instruction completed
Ds DECIMAL SUBTRACT

(Byte index alignment)

i 78 L X

v TeTe e 7 TE v N6 iz 1 15116 17 18 19120 21 22 53132 25 26 27128 29 30 31

Reference address

If no illegal digit or sign is detected in the effective deci-
mal operand or in the decimal accumulator, DECIMAL SUB-
TRACT expands the effective decimal operand to 16 bytes
(31 digits plus sign) by appending high-order 0's, alge-
braically subtracts the expanded decimal number from the con=
tents of the entire decimal accumulaior, and then loads the
difference into the decimal accumulator. If the result in the
decimal accumulator is zero, the resulting sign is forced to
the positive form.,

Overflow occurs if the difference exceeds the capacity of
the decimal accumulator (i.e., if the absolute value of the
difference is equal to or greater then 1031), in which case

CCl isreset to 0, CC2 is set to 1, and the instruction is

aborted with the contents of the previous decimal accumu-
lator, CC3 and CC4 unchanged.

Affected: (DECA), CC
(DECA) - EDO — DECA

Traps: Decimal arithmetic

Condition code settings:

1" 2 3 4 ResultinDECA
10 - - illegal digit or

sign detected instruction aborted
0 1 - - overflow
0 0 0 0 zero no illegal digit or sign de-
0 0 O 1 negative | tected, no overflow, in-
0 0 1 0 positive struction completed

DM DECIMAL MULTIPLY

(Byte index alignment, continue after interrupt)

* 78 L X

[] 3i4 5 6 718 9770 11213 14 15116 17 18 19120 271 22 23124 25 26 27128 29 30 a1

Reference address

If no illegal digit or sign is detected in the effective deci-
mal operand and there is at least one decimal sign in the
decimal accumulator, DECIMAL MULTIPLY multiplies the
effective decimal operand (multiplicand) by the entire
contents of the decimal accumutator (multiplier) and then
loads the product into the decimal accumulator. If the
result in the decimal accumulator is zero, the resulting
sign is forced to the positive form,

No overflow can occur; however, an indeterminate result
occurs (with an incorrect condition code indication, and

with no trap activation) if any of the following conditions
are not satisfied before the initial execution of DECIMAL
MULTIPLY:

1. The 4 low-order bit positions of the decimal accumu-
lator must contain the sign of the multiplier.

2. The 16 high-order digit positions of the decimal accu-
mulator (i.e., general registers 12 and 13) must contain

all 0's,

3. The effective decimal operand must not exceed 15 deci-
mal digits (i.e., the value of L must not exceed 8).

This instruction can be interrupted during the course of its
execution, and then be resumed, without producing an er-
roneous product (provided that the contents of the decimal
accumulator are not altered between the interruption and
continuation). Actually, the instruction is reexecuted,
but since there is no initializing phase, it begins with the
same iteration that was started prior to the interrupt,

Affected: (DECA), CC
(DECA)xEDO —— DECA

Traps: Decimal arithmetic

Condition code settings:

1. 2 3 4 ResultinDECA

o - - illegal digit or sign detected, instruc-

tion aborted

Decimal Instructions 57

4 Result in DECA

zero no illegal digit or sign

detected, instruction
completed

O O Jw

1 negative

o O o
© o ofN
o

positive

DD DECIMAL DIVIDE
(Byte index alignment, continue after interrupt)

* 7A L X Reference address

0 1 2 314 576 718 9 10 N11Z2 13 14 1sT16717 18 19120 21 22 23124 25 26727128 25 30 31

If there is no illegal digit or sign in the effective deci-
mal operand and if there is at least one decimal sign in
the decimal accumulator, DECIMAL DIVIDE divides the
contents of the decimal accumulator (dividend) by the ef-
fective decimal operand (divisor). Then, if no overflow
has occurred, the computer loads the quotient (15 decimal
digits plus sign) into the 8 low-order bytes of the decimal
accumulator (registers 14 and 15), and loads the remainder
(also 15 decimal digits plus sign) into the 8 high-order bytes
of the decimal accumulator (registers 12 and 13). The sign
of the remainder is the same as that of the original dividend.
If the quotient is zero, the sign of the quotient is forced to
the positive form.

Overflow can occur if any of the following conditions are
not satisfied before the initial execution of DECIMAL
DIVIDE:

1. The divisor must not be zero.

2. The length of the divisor must not be greater than 15
decimal digits (i.e., the value of L must not exceed 8.)

3. If the length of the dividend is greater than 15 decimal
digits, the absolute value of the significant digits to
the left of the 15th digit pesition (i.e., those digits in
registers 12 and 13) must be less than the absolute value
of the divisor,

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con-
tinuation). Actually, the instruction is reexecuted, but
since there is no initializing phase, it begins with the same
iteration that was started prior to the interrupt.

Affected: (DECA), CC
(DECA) + EDO —— DECA

Traps: Decimal arithmetic

Condition code settings:

1 2 3 4 ResultinDECA
10 - - llegal digit or

sign detected instruction aborted
0 1 - - overflow
0 0 0 0 zero quotient no illegal digit or
0 0 0 1 negativequotient sign defecf.ed, ne

overflow, instruc-

0 0 1 0 Dpositive quotient tion completed

58 Decimal Instructions

DC DECIMAL COMPARE
(Byte index alignment)

* 7D , L ’ X 1 Refzrence address

0 1 2374 5 5 718 9 10 1123 78 15116 17 18 19120 21 22 23122 2726 27128 29 30 2

If there is no illegal digit or illegal sign in the effective
decimal operand or in the decimal accumulator, DECIMAL
COMPARE expands the effective decimal operand to 16
bytes (31 digits plus sign) by appending high-order 0's, al-
gebraically compares the expanded decimal number to the
contents of the entire decimal accumulator, and sets CC3
and CC4 according to the result of the comparison (a posi-
tive zero compares equal to a negative zero).

Affected: CC
(DECA) : EDO

Traps: Decimal arithmetic

Condition code settings:

1 2 3 4 Result of comparison
10 - - illegal digit or sign detected, instruction
aborted
0 0 0 (DECA)equals EDO

no illegal digit
0 1 (DECA) less than EDO| or sign detected,

(DECA) greater than ;)T::r:;ﬁon com=
EDO

DSA DECIMAL SHIFT ARITHMETIC
(Byte index alignment)

Reference address

* 7C ‘ X Count]

0V 2 314 5767718 9 10 1111z 13 14 15116 17 18 19130 21 33 23124725 26 2:126 29 30 51

If no illegal digit or sign is detected in the decimal accu-
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts
the contents of the decimal accumulator (excluding the
decimal sign), with the direction and amount of the shift
determined by the effective virtual address of the instruc-
tion. If the result in the decimal accumulator is zero, the
resulting sign remains unchanged.

If no indirect addressing or indexing is used with DSA, the
shift count C is the confents of bit positions 16-31 of the
instruction word., If only indirect addressing is used with
DSA, the shift count is the contents of bit positions 16-31
of the word pointed to by the indirect address in the
instruction word. If indexing only is used with DSA, the
shift count is the contents of bit positions 16-31 of the
instruction word plus the contents of bit positions 14~-29
of the designated index register (bits 0-13, 30, and 31 of
the index are ignored). If indirect addressing and indexing
are both used with DSA, the shift count is the sum of the
contents of bit positions 16-31 of the word pointed to by
the indirect address and the contents of bit positions 14-29
of the designated index register.

The shift count, C, is treated as a 16-bit signed binary in-
teger, with negative integers in two's complement form,

If the shift count is positive, the contents of the decimal
accumulator are shifted left C decimal digit positions; if
the shift count is negative, the contents of the decimal

accumulator are shifted right -C decimal digit positions, In
either case, the decimal sign is not shifted, vacated deci-
mal digit positions are filled with 0's, and any digits shifted
out of the decimal accumulator are lost, Although the range
of possible values for C is 2715 <Cs< 215—], a shift account
greater than +31 or less than -31 is interpreted as a shift
count of exactly +31 or -31.

since there is no initializing phase, it begins with the
same iteration that was started prior to the interrupt.

Affected: (DECA), CC Traps: Decimal arithmetic

packed (EBL to EBL + 2L -2)— DECA

If any nonzero decimal digit is shifted out of the decimal

accumulator during a left shift, CC2 is set to 1; otherwise,
CC2 is reset to 0. CC2 is unconditionally reset to 0 at the 1 2 3 4
completion of a right shift,

Condition code settings:
Result in DECA

1 0 - - illegal digit or sign detected, instruction
Affected: (DECA),CC Traps: Decimal arithmetic aborted
0 zero no illegal digit or sign
Condition code settings: 0 O O 1 negative } detected, instruction
1 2 3 4 ResultinDECA 0 0 1 0 @positive completed
1 0 - - illegal digit or sign detected, instruction Exomple 1, L = 6:
aborted
0 - 0 0 zero Before execution After execution
0 - ! negative EDO = X'FOFIF2F3 X'FOF1F2F3
0 - 1 0 positive no illegal digit FAF5F6F7 F4F5F6F7
i igi
9F0' F9FO'
0 0 - - rightshift or no non- | or sign detected, FeFoF F8
zero digit shifted out { instruction (DECA) = xxxxxxxx X'00000000
of DECA on left shift [completed XXXXXXXX 00000000
0 1 1 or more nonzero XXXXXXXX 00000123
- 0C'
digit(s) shifted out) KOO 436789
of DECA on left shift CcC = XXXX 0010
PACK PACK DECIMAL DIGITS Example 2, L = 6:
(Byte index alignment, continue after interrupt) £DO = X'000938F7 X'000938F7
E655B483 E655B483
* 76 L X Reference address 02F 180’ 02F1B0’
O 1 2 314 4 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
PACK DECIMAL DIGITS converts the effective decimal (DECA) = xxxxxxxx X'00000000
. . XXXXXXKX 00000000
operand (assumed to be in zoned format) into a packed
. XXXXXXXX 00000987
decimal number and, if necessary, appends sufficient high- 6543210D"
order 0's to produce a decimal number that is 16 bytes (31 XX
decimal digits plus sign) in length. The zone (bits 0-3) of " ¢cc = xxxx 0001
the low-orderdigit of the effective decimal operand is used
to select the sign code for the packed decimal number; all
other zones are ignored in forming the packed decimal UNPK UNPA_CK DEC.IMAL DIGITS
number. 1If no illegal digit or sign appears in the packed (Byte index alignment, continue after interrupt)
decimal number, it is then loaded into the decimal accu-
mulator. If the result in the decimal accumulator is zero, 77 L X Reference address

the resu“’ing sign remains Unchqnged, 0 v 2 314 5 6 718 9 10 nl1213 1a islie 17 18 19120 21 22 24124 25 26 271w 29 0 31
If no illegal digit or sign is detected in the decimal accu-
mulator (assumed to be in packed decimal format), UNPACK
DECIMAL DIGITS converts the contents of the low-order L
bytes of the decimal accumulator to zoned decimal format
and stores the result, as a byte string, from the effective byte
location to the effective byte location plus 2L-2. The con-
tents of the 4 low-order bit positions of the decimal accu-
mulator are used to select the sign code for the last digit of
the string; a zone of 1111 (X'F') is used for all other digits.
The contents of the decimal accumulator remain unchanged,
and only 2L-1 bytes of memory are altered. If the decimal

The L field of this instruction specifies the length, in bytes,
of the resultant packed decimal number in the decimal accu-
mulaior; therefore, the length of the effective decimal oper-
and is 2L-1 bytes (where L =0 implies a length of 31 bytes
for the effective decimal operand).

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con-
tinuation). Actually, the instruction is re~executed, but

Decimal Instructions 59

accumulator contains more significant information than is
actually unpacked and stored, CC2 is set to 1; otherwise
CC2 is reset to 0. If the result in memory is zero, the
resulting sign remains unchanged.

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing an
erroneous result (provided that the contents of the decimal
accumulator are not altered between interruption and con-
tinuation). Actually, the instruction is re-executed, but
since there is no initializing phase, it begins with the same
iteration that was started prior to the interrupt,

Affected: (EBL to EBL + 2L -2),

Traps: Decimal arithmetic
CCl, cc2 '

zoned (DECA)— EBL to EBL + 2L -2

Condition code settings:

1 2 3 4 Result of UNPK
1. 0 - - illegal digit or sign detected, instruction
aborted
0o - - ianificant infore
0 all flgmflcan infor no illegal digit
mation zoned and .
or sign detected,
stored X .
instruction com-
0 1 - - some s significant pleted

information not
zoned and stored

Example 1, L =10:

EDO = XXXXXXXX X'FOFOFOF
XXXXXXXX FOFOC4'
CcC = XxxxX 0Txx

BYTE-STRING INSTRUCTIONS

Five instructions provide for the manipulation of strings
of consecutive bytes. These instructions are standard

with the SIGMA 6 computer. The byte string instruc-
tions and their mnemonic codes are as follows:

Instruction Name Mnemonic
Move Byte String MBS
Compare Byte String CBS
Translate Byte String TBS
Translate and Test Byte String TTBS

Edit Byte String EBS

These instructions are in the immediate displacement class,
are memory-to-memory operations, and proceed one byte
at a time (except for the instruction MOVE BYTE STRING,
which proceeds four bytes at a time under certain condi-

tions), These operations are under the control of informa-
tion that must be loaded into certain general registers before
the instruction is executed; hence, they may be interrupted
after any individual byte operation. The general format for
the information in the instruction word and in the general
registers is as. follows:

Before execution

After execution

(DECA) = X'00000000 X'00000000
00000001 00000001
23456789 23456789
0123456D" 0123456D"
EDO = XXXXXXXX X'FOFOFOF1
XXXXXXXX F2F3F4F5
XXXXXXXX F6F7F8F9
XXXXXXXX FOF1F2F3
XXXXXX F4F5D6!
CcC = XxXxx 00xx
Example 2, L =8:
(DECA) = X'00000000 X'00000000
23000000 23000000
10001234 10001234
0012345C" 0012345C"
EDO = XXXXXXXX X'F1FOFOFO
XXXXX XXX F1F2F3F4
XXXXXXXX FOFOF1F2
XXXXXX F3F4C5'
CcC = XxXxx 01xx
Example 3, L = 4:
(DECA) = X'00001001 X'00001001
00001002 00001002
00001003 00001003
0001004F"* 0001004F"*

60 Byte-String Instructions

Instruction word:

Operation

Code

R Displacement

—_—
0 32 314 5 6 718 9 10 11112 13 14 15116 17 18 1912021 22 23124 25 26 27128 29730 31

Contents of register R:

Mask/Fill

Source address

0 1 2 374 5 6 778 9 1011112 13 14 15118 17 18 19120 21722 23124 25 26 27128 29 30 3

Contents of register Rul:

Count Destination address
¢ 1 2 3145 6 7 13 14 15116 17 18 l9f20 21 22 23124725 26 27128 29 30 31
Designation Function
Operation The 7-bit operation code of the instruc-

Displacement

tion. (If any byte string instruction is
indirectly addressed, the computer traps
to location X'40' at the time of opera-
tion code decoding.)

The 4-bit field that identifies register R
of the current genercl register bank.

A 20-bit field that contains a signed byte
displacement value, used to form an ef-
fective byte address. The displacement
value is right-justified in the 20-bit field,
and negative values are in two's comple-
ment form.

Designation Function

An 8-bit field used only with TRANS-
LATE AND TEST BYTE STRING and
EDIT BYTE STRING. The purpose of this
field is explained in the detailed dis-
cussion of the TTBS and EBS instructions.

Mask /Fill

Source Address A 19-bit field that normally contains the
byte address of the first (most significant)
byte of the source byte string operand.
The effective source address is the source
address in register R plus the displace-
ment value in the instruction word.

Count An 8-bit field that contains the true count
(from O to 255) of the number of bytes in-
volved in the operation. This field is
decremented by 1 as each byte in the
destination byte string is processed. A
0 count means "no operation" with re-
spect to the registers and main memory.

A 19-bit field that contains the byte
address of the first (most significant)
byte of the destination byte string oper-
and. This field is incremented by 1 as
each byte in the destination byte string
is processed.

Destination

Address

In any byte string instruction, any portion of registers R or
Rul that is not explicitly defined (i.e., in the shaded part
of the register diagram for the instruction) should be coded
with zeros.

Since the value Rul is obtained by performing a logical
inclusive OR with the value 0001 and the value of the R
field of the instruction word, the two control registers are
Rand R+1if R is even. However, if Risan odd value, reg-
ister R contains an address value that functions both as a
source operand address and as a destination operand ad-
dress. Also, if register O is designated in any byte string
instruction (except for TRANSLATE AND TEST BYTE STRING
and EDIT BYTE STRING), its contents are ignored and a zero
source address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the value of the R field of the instruction word is
even and nonzero, odd, or zero:

Case I: R is even and nonzero

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is the address in register R+ 1, but without the dis-
placement added.

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
oddress is also the address in register R, but without the
displacement added.

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte string operand
is always a single byte.

In the descriptions of the byte-string instructions, the fol -
lowing abbreviations and terms are used:

D Displacement, (1)12_3]

SA Source address, (R)]3_31

ESA Effective source address, [(R)‘3_3]+(I)]2_3]] 13-31
The contents of bit positions 13-31 of register R

are added (right aligned) to the contents of bit po-
sitions 12-31 of the instruction word; the 19 low-
order bits of the result are used as the effective
source address.

C Count, (Ru1)0_7
DA Destination address, (Ru])]3_3]
SBS Source byte string, the byte string that begins with

the byte location pointed to by the 19-bit effective
source address and is C bytes in length (if R is non-
zero) or is 1 byte in length (if R is O).

DBS - Destination byte string, the byte string that begins
with the byte location pointed toby the destination
address and is always C bytes in length.

MBS MOVE BYTE STRING
(Immediate displacement, continue after interrupt)

0 61 R Displacement

0 1V 2 37475 6 718 ¢ 10 11112 13 14 15116 17 18 19120 2V 22 23122 25 26 27128 25 10 T

MOVE BYTE STRING copies the contents of the source byte
string (left toright) into the destination byte string. The pre-
viouscontents of the destination byte string are destroyed, but
the contentsof the source byte string are not affected unless
the destination byte string overlaps the source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more repetitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the first
k-1 bytes of the source byte string are duplicated in the
destination byte string x number of times, where x=C/(k-1).
For example, if the destination byte string begins with the
second byte of the source byte string, the first byte of the
source byte string is duplicated throughout the destination
byte string.

If both byte strings begin with the same byte (i.e., k = 1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string

Byte=-String Instructions 61

is duplicated throughout the remainder of the byte string
(see "Case 111", below).

Affected: (DBS), (R), (Rul)
(SBS)— DBS

If MBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40' with the contents
of register R and the destination byte string unchanged.

A speed advantage can be gained in the MBS instruction if
the source and destination byte strings both begin on the
same byte within their respective words. This allows all
bytes (except possibly the first few bytes and the last few
bytes to be moved in fullword units,

Case I: even, nonzero R field (Rul=R+1)

Contents of register R:

L Source address
0 1 2 314 6 738 9 10 11112 13 14 15016 17 1819120 21 22 23124 25 26 27 28 29 30 31

Contents of register R+1:

Destination address
13 14 |5f16 17 18 19120 21 22 23124 25 26 27128 29 30 31

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement

in MBS; the destination byte string begins with the byte lo-
cation pointed to by the destination address in register R+1.
Both byte strings are C bytes in length. When the instruc-

tion is completed, the destination and source addresses are

each incremented by C, and C is set to zero.

Case II: odd R field (Rul=R)

Contents of register R:

Count Destination address

012 3i4 56 718 9 “]0 !Tllf 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 37

The source byte string begins with the byte location pointed
to by the address in register R plus the displacement in
MBS; the destination byte string begins with the byte lo-
cation pointed to by the destination address in register R,
Both byte strings are C bytes in length. When the instruc—
tion is completed, the destination address isincremented by
C, and C is set to zero.

Case III: zeroR field (Rul=1)

Contents of register 1

Count Destination address

" : " " ; ;
0 72 314 5 6 718§ 1 TTY203 14 15118 17 18 19120 27 22 23122 2526 27128 29 30 31

The source byte string consists of a single byte, the contents
of the byte location pointed to by the displacement in MBS;
the destination byte string begins with the byte location

62 Byte-String Instructions

pointed to by the destination address in register 1 and is C
bytes in length. In this case, the source byte is duplicated
throughout the destination byte string. When the instruction
is completed, the destination address is incremented by C
and C is set to zero.

CBS COMPARE BYTE STRING
(Immediate displacement, continue after interrupt)

0 60 R Displacement

0 1 2 374 5 6 718 9 10 1112 13 14 15Te 17 18 19120 21 22 23124725 26 27126 29 30 o

COMPARE BYTE STRING compares, as magnitudes, the con-
tents of the source byte string with the contents of the des-
tination byte string, byte by corresponding byte, beginning
with the first byte of each string. The comparison continues
until the specified number of bytes have been compared or
until an inequality is found. When CBS terminates, CC3
and CC4 are set to indicate the result of the |ast comparison.
If the CBS instruction terminates due to inequality, the count
in register Rul is one greater than the number of bytes re-
maining to be compared; the source address in register R and
the destination address in register Rul indicate the locations
of the unequal bytes.

Affected: (R), (Rul), CC3, CC4
(SBS) : (DBS)

Condition code settings:

1 2 3 4 Result of CBS

= = 0 0 source byte string equals destination
byte string

= = 0 1 source byte string less than destination
byte string

= - 1 0 source byte string greater than destination

byte string

If CBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40' with the contents
of register R and the destination byte string unchanged.

Cose I: even, nonzeroR field (Rul=R+1)

Contents of register R

Source address

16 1tz 37145108 17 18 19120 21 22 23124 25 26 27128 29 30 3t

Contents of register R+1

Count o Destination address

0 1 2 3T4 35 & 718 5 10 VW[lf 13 14 Tiflé 17 18 WiZO 2122 23124725 26 27128 29 30 3

The source byte string begins with the byte location
pointed to by the source address in register R plus the
displacement in CBS; the destination byte string begins
with the byte location pointed to by the destination ad-
dress in register R+1. Both byte strings are C bytes in
length.

Case 11: odd R field (Rul=R)

Contents of register R

Count Destination address

G2 314 5 6 /08 9 10 T2 1314 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The source byte string begins with the byte location
pointed to by the address in register R plus the displace-
ment in CBS; the destination byte string begins with the byte
location pointed to by the destination address in register R.
Both byte strings are C bytes in length.

Case I1I: zeroR field (Rul=1)

Contents of register 1

Count Destination address

O 1 2 3T4 56 718 9 %0 11112 13 14 15716 17 18 19720 27 33 331 3¢ 25 26 27128 29 30 31

The source byte string consists of a single byte, the contents
of the location pointed to by the displacement in CBS; the
destination byte string begins with the byte location pointed
to by the destination address in register 1 and is C bytes in
length. In this case, the source byte is compared with each
byte of the destination byte string until an inequality is found.

TBS TRANSLATE BYTE STRING
(Immediate displacement, continue after interrupt)

0 41 R Displacement

Case I: even, nonzeroR field (Rul=R+1)

Contents of register R

Source address

¥ Y % & . N ; +
C V27378 5 6 778 9 10112 13 14 15T67 1718 19720 2V 22 23124 25 26 27128 25 30 31

Contents of register R+1

Count Destination address

0 v 2 374756 718 9 10 11112 13 4 15116 1718 19120 27 37 23133 25 26 27128 29 30 31

The destination byte string begins with the byte location
pointed to by the destination address in registerR + 1 and is C
bytes in length. The source byte string (translation table)
begins with the byte location pointed to by the displacement
in TBS plus the source address in register R. When the in-
struction is completed, the destination address is incremented
by C, C is set to zero, and the source address remains
unchanged.

Case II: odd R field (Rul=R)

Because of the interruptible nature of TRANSLATE BYTE
STRING, the results of the instruction are unpredictable
when an odd-numbered general register is specified by the
R field of the instruction word.

Case I1l: zeroR field (Rul=1)

Contents of register 1

C v 2 314 5 6 708 9 111 12 13 14 15016 17 18 19120 21 22 23t 24 25 26 27128 29 30 31

TRANSLATE BYTE STRING replaces each byte of the des-
tination byte string with a source byte located in a transla-
tion table. The destination byte string begins with the byte
location pointed to by the destination address in register
Rul, and is C bytes in length. The translation table con-
sists of up to 256 consecutive byte locations, with the first
byte location of the table pointed to by the displacement
in TBS plus the source address in register R. A source byte
is defined as that which is in the byte location pointed to
by the 19 low-order bits of the sum of the following values:

1. The displacement in bit positions 12-31 of the TBS
instruction,

2. The current contents of bit positions 13-31 of register
R (source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 of
register (Rul).

Affected: (DBS),(Rul)
translated (DBS) — DBS

If TBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to location X'40' with the contents
of register R and the destination byte string unchanged.

Count i Destination address
0 1 2 374 5 6 718 9 10 112713 14 15116 17 18 19120 21722 23124 25 26 27128 29 30 31

The destination byte string begins with the byte location
pointed o by the destination address in register 1 and is C
bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TBS. When the instruction is completed, the destination
address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING
(Immediate displacement, continue after interrupt)

0 40 R Displacement

0 v 2 34 56 7T8 9 10 11213 14 15116 17 16 5120 27 23 23124 25 26 27128 29 30 31

TRANSLATE AND TEST BYTE STRING compares the mask in
bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with
the byte location pointed to by the destination address in
register Rul, and is C bytes in length. The byte transla-
tion table and the translation bytes themselves are identical
to that described for the instruction TRANSLATE BYTE
STRING. The destination byte string is examined (without
being changed) until a translation byte (source byte) is found
that contains a 1 in any of the bit positions selected by a'l
in the mask. When such atranslation byte is found, TTBS
replaces the mask with the logical product (AND) of the
translation byte and the mask, and terminates with CC4 set
to i. If the TTBS instruction terminates due to the above

Byte-String Instructions 63

condition, the count (C) in register Rul is one greater than
the number of bytes remaining to be compared and the des-
tination address in register Rul indicates the location of the
destination byte that caused the instruction to terminate, If
no translation byte is found that satisfies the above condi-
tion after the specified number of destination bytes have
been compared, TTBS terminates with CC4 reset to 0. In
no case does the TTBS instruction change the source byte
string.

Affected: (R), (Rul), CC4

If translated (SBS) n mask # 0, translated (5BS) n mask
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

Result of TTBS

translation bytes and the mask do not
compare ones anyplace

the last translation byte compared with
the mask contained at least one 1 corre-
sponding to a 1 in the mask

If TTBS is indirectly addressed, it is treated as a nonexis—
tent instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera~
tion code decoding) and traps to location X'40' with

the contents of register R and the destination byte string
unchanged.

Case I: even, nonzero R field (Rul=R+1)

Contents of register R

Mask o Source address

0 1 2 31456 718 9 10 11112 13 14 15176 17 18 19120 2122 23124725 26 27128 29 30 31

Contents of register R+1

Destination address

01 2 3145 6 7018 9 10 11112 1314 15116 17 18 19120 21 22 23124 25 26 27?282‘?30 31

The destination byte string begins with the byte location
pointed to by the destination address in register R+1 and is
C bytes in length. The source byte string (translation table)
begins with the byte location pointed to by the displacement
in TTBS plus the source address in register R.

Case I1: odd R field

Because of the interruptible nature of TRANSLATE AND
TEST BYTE STRING, the results of the instruction are un-
predictable when an odd-numbered general register is speci-
fied by the R field of the instruction word.

Case III: zeroR field (Rul=1)

Contents of register 1

Count Destination address

STET e T e s m o s s it o e s 23724725 26 2128 9 30 1

64 Byte=String Instructions

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is C
bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction auiomatically provides
a mask of eight 1's, (This is an exception to the general
rule, used in the other byte string instructions, that register
0 provides all 0's as its contents.)

EBS EDIT BYTE STRING
(Immediate displacement, continue after interrupt)

0 63 R Displacement

0 12 3Ta" 576 718 5 10 11112 13 14 15776 17 18 19120 37 22 53722 25 26 27128 29 30 3)

EDIT BYTE STRING converts a decimal information field
from packed decimal format to zoned decimal format, under
control of the editing pattern in the destination byte string,
and replaces the destination byte string with the edited, zoned
result. (See "Decimal Instructions" fora description of packed
and zoned decimal formats.) EBS proceeds 1 byte at a time,
starting with the first (most significant) byte of the editing
pattern, and continues until all bytes in the editing pattern
have been processed. The fill character, contained in bit
positions 0-7 of register R, replaces the pattern byte under
specified conditions. More than one decimal number field
can be edited by a single EBS instruction if the pattern in
memory is, in fact, a series of patterns corresponding to a
series of number fields. In such cases, however, after the
EBS instruction is completed, the condition code indicates
the result of the last decimal number field processed and
register 1 contains the byte address (or the byte address

plus 1) of the last significance indicator in the edited des-
tination byte string. (This allows the insertion of o floating
dollar sign, etc. with a subsequent instruction.)

The results of EBS are unpredictable if the R field of EBS is
an odd value, or if the R field of EBS is 0.

Contents of register R

Fill oo I Source address

0 1 2 31475 67718 9 10 11112 13 14 15116 17 18 19120 21 22 23177 25 26 27128 29 30 31

Contents of register R+1

Count Destination address

0 1 2 34576 718 9 10 11z 13 18 3116 77 18 9120 21 22 23124 25 26 27128 29 30 3

The destination byte string is an editing pattern that begins
in the byte location pointed to by the destination ad-
dress in register R+1, and is C bytes in length. The deci-
mal information field, which must be in packed decimal
format, begins with the byte location pointed to by the
displacement in EBS plus the source address in register R,
The decimal information field must contain legal decimal
digit and sign codes (packed format) and must begin with
a decimal digit.

The destination byte string (the editing pattern) moy contain
any 8-bit codes desired. However, four byte codes in the

editing pattern have special meanings. These codes are as
follows: :

Binary value Function Abbreviation
0010 0000 (X'20') Digit selector ds
0010 0001 (X'21Y Significance start ss
0010 0010 (X'22Y Field separation fs
0010 0011 (X'23') Immediate sig- si

nificance start

Before executing EBS, the condition code should be set to

0000 if the high-order digit of the decimal number is in the
left half of a byte, and should be set to 0100 if the high-
order digit is in the right half of a byte.

The editing operation performed on each pattern byte of
the destination byte string is determined by the following
conditions:

1. The pattern byte obtained from the destination byte
string.

2. The decimal digit obtained from the decimal number
field.

3. The current state of the condition code,

Depending upon various combinations of these conditions,

the instruction EDIT BYTE STRING performs one (and only
one) of the following actions with the pattern byte and the
decimal digit:

1. The fill character (contents of bit positions 0-7 of reg-
ister R) or a blank character (character code X'40")
replaces the byte in the destination byte string.

2. The decimal digit is expanded to zoned decimal format

(by generating X'Fd*, where d is the decimal digit) and-

replaces the pattern byte in the destination byte string.

3. The pattern byte remains unchanged.
In general, the normal editing process is as follows:

1. Each byte of the destination byte string is replaced by
a fill character until significance is present, either in
the destination byte string or in the decimal informa-
tion field. Significance is indicated by any of the
following:

a. The pattern byte is X'23' (immediate significance
start), which begins significance with the current
decimal digit.

b. The pattern byte is X'21 (significance start), which
begins significance with the following pattern byte.

c. The current decimal digit is nonzero, which begins
significance with the current pattern byte.

2. After significance is encountered, each pattern byte
thatis X'20" (digitselector), X'21' (significance start),
or X'23' (immediate significance start) is replaced by
a zoned decimal number from the decimal field and all

other pattern bytes are unchanged. This process con-
“tinues until any of the following conditions occur:

a. A positive sign is encountered in the decimal field,
inwhich case subsequent pattern bytes are replaced
by blank characters (X'40') until significance is
again present, until o field separator is encoun-
tered, or until the destination byte string is entirely
processed, whichever occurs first.

b. A negctive sign is encountered in the decimal field,

in which case subsequent pattern bytes are un-
changed until significance is again present, until
a field separator is encountered, or until the des-
tination byte string is entirely processed, which-
ever occurs first,

c. A pattern byte of X'22" (field separator) is encoun=
tered, in which case the field separator is replaced
by a fill character; subsequent pattern bytes are re-
placed by the fill character until significance is
again present, until a positive, or negative sign is
encountered, or until the destination byte string is
entirely processed, whichever occurs first.

d. The destination byte string is entirely processed,
in which case the computer executes the next
instruction in sequence.

The detailed operation of EDIT BYTE STRING is as given
below.

The explanation is necessarily quite detailed due to the high
degree of flexibility inherent in EBS. Condition code set-
tings are made continuously during the editing process and
these settings help determine how each subsequent pattern
byte will be edited, The summary of condition code settings
given on the next page will help clarify the discussion below

1. If the count in bit position 0-7 of register R+1 is a non-
zero, a pattern byte is obtained from the destination
byte string; if the count in register R+1 is 0, the com-
puter executes the next instruction in sequence.

2. If the pattern byte is a digit selector (X'20'), a signifi-
cance start (X'21'), or immediate significance start
(X'23"), a digit is accessed from the decimal informa-
tion field as follows:

a. A decimal byte is obtained from the byte location
pointed to by the displacement in EBS plus the
source address in register R,

b. If bits 0-3 of the decimal byte are a sign code, the
computer automatically aborts execution of EBS and
traps to location X'45', with the contents of reg-
ister R, register R+1, the condition code, and the
destination byte string unchanged from their cur-
rent contents,

c. IfCC2 is currently set to 0, the digit to be
used for editing is the left digit (bits 0-3) of
the decimal byte; however, if CC2 is currently
set to 1, the digit to be used is the right
digit (bits 4-7) of the decimal byte. 1In either
case, CC3 is set to 1 if the digit is nonzero.
If CC2 is set to 1 and the right digit (bits 4-7) of

Byte-String Instructions 65

.

the decimal byte is a sign code, the computer
avtomatically aborts execution of EBS and traps
to location X'45' as described above.

d. One of the following editing actions is performed.

Conditions Action Mark
Pattern byte = SI(X'23") Expand digit to zoned Mode 1
format, store in pat-
tern byte location,
and set CC4 to 1 (start
significance)
Pattern byte =SS(X'21') Expand digit to zoned None
CC4 =1 format and store in pat-
ternbyte location (be-
cause CC4=1 means
significance already
encountered
Pattern byte =SS Expand digit to zoned Mode 1
CC4=0 format, store in pattern
nonzero digit byte location, (because
nonzero digit begins
significance) and set
CC4to 1
Pattern byte =5S Store fill characterin Mode 2

CC4=0
digit =0

pattern byte location
(because significance
starts with next pattern
byte) and set CC4 to 1

Pattern byte =DS(X'20') Expand digit to zoned None

CC4 =1 format, and store digit
in pattern byte location
Pattern byte =DS Expand digit to zoned Mode 1
CC4=0 format, store digit in
nonzero digit pattern byte location,
and set CC4 to 1 to
signal significance
Pattern byte =DS Store fill character in None

CC4=0
digit =0

pattern byte location
(because significance
not encountered yet)

e. If CC2is currently reset to 0 and if bits 4-7 of the
decimal byte are a positive decimal sign code,
CClis set to 1, CC4 isreset to 0, and the source
address in register R is incremented by 1. If CC2
is currently reset to 0 and if bits 4~7 of the deci-
mal byte are a negative decimal sign code, CCl1
and CC4 are both set to 1, and the source address
is incremented by 1, Otherwise, CC2 is added to
the source address and then CC2 is inverted.

f. If marking is invoked at step d, above, one of the
two following marking operations are performed:

Mode 1: load bits 13-31 of register R+1 into bit
positions 13-31 of register 1; bit positions
0-12 of register are unpredictable,

Mode 2: Load bits 13-31 of register R+1 into bit
positions 13-31 of register 1 and then

66 Byte~String Instructions

increment the contents of register 1
by 1: bit positions 0-12 of register |
are unpredictable.

[f marking is not applicable (i.e., significonce‘
not been encountered, the contents of register
are not affected.

3. If the pattern byte is a field separator (X'22'), the fill
character is stored in the pattern byte location, CC1,
CC3, and CC4 are all reset to 0's, and CC2 remains
unchanged.

4. If the pattern byte is not a digit selector, significance
start, immediate significance start or field separator,
one of the following actions are performed:

Conditions Action

CCl1 =0 store fill character in pattern byte
CC4=0 location

CCl =1 store blank character (X'40') in pattern
CC4=0 byte location

CC4 =1 none (pattern byte remains unchanged)

5. Increment the destination address in register Rul, de-
crement the count in register Rul. If the count is still
nonzero, process the next pattern byte as above, other-
wise, execute the next instruction in sequence,

Affected: (R), (Rul) Traps: Decimal arithmetic
(register 1), (DBS),CC

edited (SBS) DBS

Condition code settings: -

1 2 3 4 Resultof EBS

0 - - 0 significance is not present, no sign digit
has been encountered

0 - - 1 significance is present, no sign digit has
been encountered

1 - - 0 apositive sign has been encountered

I = = 1 anegative sign has been encountered

= 0 - - nextdigit to be processed is left digit
of byte

= 1 - = nextdigit to be processed is right digit
of byte

= = 0 - nononzero digit has been encountered

- = 1 - anonzero digit has been encountered

If EBS is indirectly addressed, it is treated as o nonexistent
instruction, in which case the computer unconditionally

aborts execution of the instruction (at the time of operatio,
code decoding) and traps to location X'40' with the confer‘
of register R, register Rul, register 1, the destination byte
string, and the condition code unchanged.

fanillegal digit or sign is detected in the decimal infor-
mation field, the computer unconditionally aborts execution
of the instruction (at the time the illegal digit or sign is en-
countered) and traps to location X'45' with the contents of
register R, register Rul, register 1, the destination byte
string, and the condition code containing the results of the
last editing operation performed before the illegal digit or
sign was encountered,

In the following examples, the hexadecimal codes for the
digit selector (x'20"), the significance start (X'21'), the
field separation (X'22'), and the immediate significance
start (X'23') are represented by the character groups ds, ss,
fs, and si, respectively. Also, the symbol4 is used to
represent the character blank (X'40".

Example 1, before execution:

The instruction word is: X'63600000"

The contents of register 6 are: X'5C000100"
The contents of register 7 are: X'0C001000"

The contents of the decimal information field beginning at
byte location X'100' are: 00 00 00 O+

The contents of the destination byte string beginning at
byte location X'1000" are:

dsds, dsdsss. dsds®b CR
The condition code is: 0000

Example 1, after execution:

The instruction word is unchanged

The new contents of register 6 are: X'5C000104"

The new contents of register 7 are: X'0000100C"

The contents of the decimal information field are unchanged

The new contents of the destination byte string are :
FEEEEE 00bbBD

The new condition code is: 1000

The contents of register 1 are: X'xxx01006"

By subsequent programming, a floating dollar sign can be
inserted in front of the first significant character of the
edited byte string by using the contents of register 1, minus
1, as the address of the byte location where the dollar sign
is to be inserted.

Example 2, before execution:
—-—

The initial conditions are identical to example 1, except
that the contents of the decimal information field are:
06 54 32 1-

Example 2, after execution:

The instruction word and the decimal field are unchanged

The new contents of registers 6 and 7 are identical to those
given for example 1

The new contents of the destination byte string are

*6,543.216CR

The new condition code is: 1011

The new contents of register 1 are: X'xxx01001"

Example 3, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal field are:

00 54 32 1+

Example 3, after execution:

The instruction word and the decimal field are unchanged

The new contents of registers 6 and 7 are identical to that
given for example 1

The new contents of the destination byte string are
***543.2166b
The new condition code is: 1010

The new contents of register 1 are: X'xxx01003'

Example 4, before execution:

The instruction word is: X'63400100"

The contents of register 4 are: X'78001000"
The contents of register 5 are: X'19002000'

The contents of the decimal information field beginning at
byte location X'1100' are:

06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning at
byte location X'2000' are :

Adsdssi. dsdsds fsBdsdsss . dsdsCfsDsidsdsEND
The condition code is: 0100

Example 4, after execution:

The instruction word is unchonged

The new contents of register 4 are: X'7B001009"

The new contents of register 5 are: X'00002019%"

The decimal information field s unchanged

The new contents of the destination byte string are:
F612.500##41 2 34544035ENnD

The new condition code is: 1011

The new contents of register | are: X'xxx02013'

PUSH-DOWN INSTRUCTIONS

The term "push-down processing" refers to the programming
technique (used extensively in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously
stored information. Typically, this process involves a re-
served area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled
(ioaded) on a lost-in, first-out basis. The SIGMA 6 computer

Push-Down Instructions 67

provides for simplified and efficient programming of push-
down processing by means of the following instructions:

Instruction Name Mnemonic

Push Word PSW
Pull Word PLW
Push Multiple PSM
Pull Multiple PLM
Modify Stack Pointer Msp

STACK POINTER DOUBLEWORD

Each of these instructions operates with respect to a memory
stack that is defined by a doubleword located at the effec-
tive address of the instruction. This doubleword, referred
to as a stack pointer doubleword (SPD), has the following
structure:

Top of stack address

01 2 314 5 ¢ B 8 ‘9 QVlllf 13 14 ISilé 1718 19120 21 22 23124 25 26 27128 29 30 31

T T
S Space count Wi Word count
32 33 34 35136 37738 39140 41 42 43144 45 4 47148 45 50 51152 53 54 55156 57 58 59160 61 62 63

Bit positions 15 through 31 of the SPD contain a 17-bit ad-
dress field that points to the location of the word currently
at the top (highest-numbered address) of the operand stack
in a push operation, the top-of-stack address is incremented
by 1 and then an operand in a general register is pushed
(stored) into that location, thus becoming the contents of
the new top of the stack; the contents of the previous top of
the stack remain unchanged. In a pull operation, the con-
tents of the current top of the stack are pulled (loaded)into
a general register and then the top-of-stack address is de-
cremented by 1; the previous contents of the stack re-
main unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a 15-
bit count (0 to 32,767) of the number of words currently in
the stack. In a push operation, the space count is decre-
mented by 1 and the word count is incremented by 1; in a
pull operation, the space count isincremented by 1 and the
word count is decremented by 1. At the beginning of all
push-down instructions, the space count and the word count
are each tested to determine whether or not the instruction
would cause either count field to be incremented above the
upper limit of 215-1 (32,767), or to be decremented below
the lower limit of 0. If execution of the push-down instruc-
tion would cause either count limit to be exceeded, the
computer unconditionally aborts execution of the instruc~
tion, with the stack, the stack pointer doubleword, and the
contents of general registers unchanged. Ordinarily, the
computer traps to location X'42" after aborting a push-down
instruction because of impending stack limit overflow or
underflow, and with the condition code unchanged from the
value it contained before execution of the instruction.

68 Push-Down Instructions

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the SPDto 1.

Bit position 32 of the SPD, referred t- as the trap-on-space
(TS) inhibit bit, determines whether or not the computer is
to trap to location X'42' as a result of impending overflow
or underflow of the space count (SPD33-47), as follows:

TS Space count overflow/underflow action

0 If the execution of a pull instruction would cause the
space count to exceed 215-1, or if the execution of a
push instruction would cause the space count to be less
than 0, the computer traps to location X'42' with the
condition code unchanged.

1 Instead of trapping to location X'42', the computer
sets CCl to 1 and then executes the next instruction
in sequence.

Bit position 48 of the SPD, referred to as the trap-on-word
(TW) inhibit bit, determines whether or not the computer is
to trap to focation X'42' as a result of impending overflow
or underflow of the word count (SPD49_°3), as follows:

TW Word count overflow/underflow action

0 If the execution of a push instruction would cause the
word count to exceed 215-1, or if the execution of a
puli instruction would cause the word count to be less
than 0, the computer traps to location X'42' with the
condition code unchanged.

Instead of trapping to location X'42', the computer
sets CC3 to | and then executes the next instruction
in sequence.

PUSH-DOWN CONDITION CODE SETTINGS

If the execution of a push-down instruction is attempted and
the computer traps to location X'42', the condition code re-
mains unchanged from the value it contained immediately
before the instruction was executed.

If the execution of a push-down instruction is attempted and
the instruction is aborted because of impending stack limit
overflow or underflow (or both) but the push-down stack
limit trap is inhibited by one (or both) of the inhibits (TS
and TW), then, CC1 or CC3 is set to 1 (or both are set to
1's) to indicate the reason for aborting the push-down in-
struction, as follows:

Reason for abort

impending overflow of word count on a
push operation or impending underflow
of word count on a pull operation. The
push-down stack limit trap was inhibited
by the TW bit (SPD48)

impending overflow of space count on a
pull operation or impending underflow
of space count on a push operation. The
push-down stack limit trap was inhibited
by the TS bit (SPD32)

Reason for abort

impending overflow of word count and
underflow of space count on a push op-
eration or impending overflow of space
count and underflow of word count on
a pull operation. The push-down stack
limit trap was inhibited by both the TW
and the TS bits

If a push-down instruction is successfully executed, CC1
and CC3 are reset to O at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re-
spectively, as follows:

12 3 4
- 0 - 0

Status of space and word counts

the current space count and the current
word count are both greater than zero

the current space count is greater than
zero, but the current word count is zero,
indicating that the stack is now empty.
If the next operation on the stack is a
pull instruction, the instruction will be
aborted

the currert word count is greater than
zero, but the current space count is zero,
indicating that the stack is now full. If
the next operation on the stack is a push
instruction, the instruction will be aborted

If the computer does not trap to location X'42" as a result
of impending stack limit overflow/underflow, CC2 and
CC4 indicate the status of the space and word counts at
the termination of the push-down instruction, regardless
of whether or not the space and word counts were actually
modified by the instruction. In the following descriptions
of the push-down instruction, only those condition codes
are given that can actually be produced by the instruction,
provided the computer does not trap to location X'42',

PSW PUSH WORD
(Doubleword index alignment)

* 09 R X

T 23T T s TR s U B R B T R R T i T T e e

Reference address

PUSH WORD stores the contents of register R into the push-
down stack defined by the stack pointer doubleword located
at the effective doubleword address of PSW. I[f the push
operation can be successfully performed, the instruction
operates as follows:

1. The current top-of-stack address (SPD15-31) is incre-
mented by 1, to point to the new top-of-stack
location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

3. The space count (SPD33-47) is decremented by 1 and
the word count (SPD49_g3) is incremented by 1.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD), (TSA+1),
cc

Trap: push-down stack limit

(SPD)5_gq+ 1 —SP
(R)——=(SPD,,_4.)
(SPD) 1 —— SPD

(SPD) ——SPD

D15-31

33-47"
49-637

33-47
49-63

Condition code settings:

1 2 3 4 Resultof PSW
0 0 0 o :Ec;eocounf is greater instruction
¢ completed

I 0 O space count is now 0

0 1 0 wordcount= 2]5-—1,

TW =1
1 1 0 0 space count =0,
TS =1 instruction
aborted

space count = 0, word
count =0, TS=1

word count = 2]5—1,
space count =0,
TW=1, and TS=1 J

PLW PULL WORD
(Doubleword index alignment)

* 08 R X Reference address

0 1 2 304 5 6 778 9 10 11112 13 14 15016 17 18 19120 21 22 23124 2526 27128729 30 31

PULL WORD loads register R with the word currently at the
top of the push~down stack defined by the stack pointer
doubleword located at the effective doubleword address of
PLW. If the pull operation can be performed successfully,
the instruction operates as follows:

1. Register R is loaded with the contents of the location
pointed to by the current top-of-stack address

(SPD]5_3]).

2. The current top-of-stack address is decremented by 1
to point to the new top-of-stack location.

7

3. The space count (SPD33_47) is incremented by 1and
the word count (SPD49-43) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R), CC

Trap: Push-down stack limit

((SPD)| 5_4y) —R; (SPD) 1 ——SPD

15-31 15-31

(SPD)33_47 +1——=5SPD (SPD 1

SPD 4o 63

33-47° 49-63"

Push-Down Instructions 69

Condition code settings:

1 2 3 4 Result of PLW
0 0 0 O wordcountis greater
than 0 instruction
0 0 0 1 wordcountisnow0 completed
0 1 1 word count=0, TW=1]
1 1 1 space count=0,
word count=0, TW=1
1 0 0 0 spacecount=215-1, instruction
TS =1 [aborted
1 0 1 1 space count =215,
word count=0, TS=1
and TW =1 J

PSM PUSH MULTIPLE
(Doubleword index alignment)

* 0B R X Reference address

0 i 2 314 56 718 9 10 11112 13 14 15The17 18 19120 21 22 23124 25 26 27128 29 30 31

PUSH MULTIPLE stores the contents of a sequential set of
general registers into the push-down stack defined by the
stack pointer doubleword located at the effective double-
word address of PSM. The condition code is assumed to
contain a count of the number of registers to be pushed in-
to the stack. (An initial value of 0000 for the condition
code specifies that all 16 general registers are to be pushed
into the stack.) The registers are treated as a circular set
(with register 0 following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed into the stack is register R+CC -1, and the
contents of this register become the contents of the new
top-of-stack location.

If there is sufficient space in the stack for all of the speci-
fied registers, PSM operates as follows:

1. The contents of registers R to R+ CC -1 are stored in
an ascending sequence, beginning with the location
pointed to by the current top-of-stack address
(SPD15-31) plus | and ending with the current top-
of~stack address plus CC, :

2. The current top-of-stack address is incremented by the

value of CC, to point to the new top-of-stack location.

3. The space count (SPD33_47) is decremented by the
value of CC and the word count is incremented by
the value of CC.

4. The condition code is set to reflect the new status of
the space count,

Affected: (SPD), (TSA+1)to Trap: Push-down stack limit
(TSA+CQC), CC

(R)**(SPD)]5_3] +1... (R+CC-1)——(SPD) CcC
(SPD)]5_3]+CC — SPD]5_3]

(SPD)33_47-CC —_— SPD33<_47
(SPD)

49-63"CCT5PD 45 1

15-31+

70 Push-Down Instructions

Condition code settings:

1. 2 3 4 Resultof PSM
0 0 0 0 space count> 0} instruction
0 0 0 spacecount=0 N completed
0 0 1 0 wordcount+CC>2157,

W =1
1 0 space count <CC, TS = 1

1.0 0 1 spacecount<CC, word
count=0, TS =1

space count <CC, word .)
count + CC> 215-1, [instruction
TS=1, and TW = 1 aborted

1.1 0 0 spacecount=0, TS =1

space count =0, word
count=0, TS =1

space count =0, word
count + CC> 2‘5-],
TS=1, and TW = 1 J

If the instruction starts storing words into an accessible re-
gion of memory and then crosses into an inaccessible memory
region, either the memory protection trap or the nonexistent
memory address trap can occur. In either case, the trap is
activated with the condition code unchanged from the value
it contained before the execution of PSM. The effective ad-
dress of the instruction permits the trap routine to compute
how many words of memory have been changed. Since it is
permissible to use indirect addressing through one of the af-
fected locations, or even to execute an instruction located
in one of the affected locations; a trapped PSM instruction
may have already overwritten the direct address, or the
PSM instruction itself, thus destroying any possibility of
continuing the program successfully. If such programming
must be done, it is advisable that the direct address, or the
PSM instruction, occupy the last location in which the con-
tents of a register are to be stored by the PSM instruction.

If the address of the elements within the stack {pointed to
by the top-of-stack address) is in the range O through 15,
then the registers indicated by the R field of the PSM in-
struction are stored in the general registers rather than in
core memory. In this case the results will be unpredictable
if any source registers are also used as destination registers.

PIM PULL MULTIPLE
(Doubleword index alignment)

* 0A R X Reference address

0 12 31435 6 718 910 12 13 14 1576 17 18 19120 21 22 23124725 26 27128 25 30 31

PULL MULTIPLE loads a sequential set of general registers
from the push-down stack defined by the stack pointer
doubleword located at the effective doubleword address
of PLM. The condition code is assumed to contain a count
of the number of words to be pulled from the stack. (An in-
itial value of 0000 for the condition code specifies that

16 words are to be pulled from the stack.) The registers
are treated as a circular set (with register 0 following

register 15), the first register to be loaded from the stack
is register R+ CC =1, and the contents of the current top~
of-stack location become the contents of this register. The
last register to be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R+ CC-1 to register R are loaded in a de-
scending sequence, beginning with the contents of
the location pointed to by the current top-of-stack
address (SPD15_31) and ending with the contents of
the location pointed to by the current top-of-stack
address minus CC -1.

2. The current top-of-stack address is decremented by
the value of CC, to point to the new top~of-stack
location.

3. The space count (SPD33-47) is incremented by the
value of CC and the word count is decremented by
the, value of CC.

4. The condition code is set to reflect the new status
of the word count.

Affected: (SPD), (R+CC-1)
to (R), CC

((SPD)5_g)) —=R+CC-1, ...,
(SPD);5_4, - [CC-1]) —R

Trap: Push-down stack limit

(SPD),5 5y - CC——SPD, .
(SPD)3 47 + CC—=5PD,,
(SPD)g9_g3 = CC——=5PD,o

Condition code settings:

1 2 3 4 Resultof PLM
0 0 0 0 wordcount>0 .
instruction completed
0 0 0 1 wordcount=0 |
0 0 1 0 wordcount<CC, TW =1
0 0 T 1 wordcount=0, TW=1
0 1 1 0 space count =0, word
count <CC, TW =1
0 1 1 1 space count=0, word
count=0, TW =1 | instruction
1 0 0 0 space count+ CC >2]5-l, aborted
TS=1
1 0 1 0 space count +CC >2]5-l,
word count <CC, TS =1,
and TW =]
1 0 1 1 space count+ CC >2]5-—l,
word count =0, TS =1,
and TW =] J

If the instruction starts loading from an existent region of
memory and then crosses a memory page boundary into an
inaccessible memory region, either the memory protection
trap or the nonexistent' memory address trap can occur. In
either case, the trap is activated with the condition code

unchanged from the value it contained before the execution
of PLM. The effective address of the instruction permits
the trap routine to compute how many registers have been
loaded. Since it is permissible to use indexing or indirect
addressing through a general register, or even to execute
an instruction located in a general register, a trapped PLM
instruction may have already overwritten the index, direct
address, or the PLM instruction itself, thus destroying any
possibility of continuing the program successfully, If such
programming must be done, it is advisable that the register
containing the direct address, index displacement, or in-
struction be the last register loaded by the PLM instruction.

If the address of the elements within the stack (pointed to
by the top-of-stack address) is in the range 0 through 15,
then the words to be loaded are taken from the general re-
gisters rather than from core memory. In this case the re-
sults will be unpredictable if any of the source registers
are also used as destination registers,

Msp MODIFY STACK POINTER
(Doubleword index alignment)

* 13 R X Reference address

01 23745 6 718 5 10 N2 13147516177 18 19120 0 22 23124 25 26 27128 29 30 31

MODIFY STACK POINTER modifies the stack pointer double-
word, located at the effective doubleword address of MSP,
by the contents of register R. Register R is assumed to have
the following format:

Modifier

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative infegers in two's complement
form (i. e., a fixed-point halfword). The modifier is alge-
braically added to the top-of-stack address, subtracted from
the space count, and added to the word count in the stack
pointer doubleword. If, as a result of MSP, either the space
count or the word count would be decreased below 0 or jn-
creased above 215-1, the instruction is aborted. Then, the
computer either traps to location X'42' or sets the condition
code to reflect the reason for aborting, depending on the
stack limit trap inhibits.

If the modification of the stack pointer doubleword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPD)15.3], to point to a
new top-of-stack location. (If the modifier is negative,
it is extended to 17 bits by appending a high-order 1.)

2. The modifier is algebraically subtracted from the cur-
rent space count (SPD33_47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current word
count (SPD49_g3) and the result becomes the new word
count,

4. The condition code is set to reflect the new status of
the new space count and new word count.

Affected: (SPD), CC Trap: Push-down stack limit

Push-Down Instructions 71

(SPD)
(SPD)
(SPD)

+ (R) SPD

15-31 T R)ig_31sE 15-31
33-47 ~ Ry43 SPDa3 47
49-63 * M14-31 SPD 4o g3

Condition code settings:

12 3 4 Result of MSP
0 0 0 0 spacecount>0,
word count > 0
0 0 0 1 space count>0,
word count =0
0 1 0 0 spacecount=0, ¢ msfrulcfflodn
word count > 0 complete
0 1 0 1 spacecount=0,
word count =0,
modifier = 0 J

If CC1, or CC3, or both CC1 and CC3 are 1's after exe-
cution of MSP, the instruction was aborted but the push-
down stack limit trap was inhibited by the trap-on-space
inhibit (SPD3p), by the trap~on-word inhibit (SPD4g), or
both. The condition code is set to reflect the reason for
aborting as follows:

1 2 3 4 Status of space count and word count

- - - 0 wordcount>0
word count = 0
0 < word count + modifier = 2151

word count + modifier <0, and TW =1
or word count + modifier > 219-1 and

T™W=1
- 0 - - spacecount>0
- 1 - - space count =0

0 < space count - modifier < 215-1

space count - modifier <0, and TS = 1
or space count - modifier > 215-1
TS =1

EXECUTE/BRANCH INSTRUCTIONS

The EXECUTE instruction can be used to insert another in-
struction into the program sequence, and the branch instruc-
tions can be used to alter the program sequence, either
unconditionally or conditionally. If a branch is uncondi-
tional (or conditional and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is normally the next instruction to be
executed, If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is normally
token from the next location, in ascending sequence, after
the branch instruction.

Prior to the time that an instruction is accessed from memory
for execution, bit positions 15-31 of the program status
doubleword contain the virtual address of the instruction,
referred to as the instruction address. At this time, the

72 Execute/Branch Instructions

computer traps to location X'40' if the actual address of
the instruction is nonexistent or instruction-access pro-
tected. If the instruction address is existent and is

not instruction-access protected, the instruction is ac-
cessed and the instruction address portion of the program
status doubleword is incremented by 1, so that it now con-
tains the virtual address of the next instruction in sequence
(referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in-
struction address by 1 and then traps to the location assigned
to the trap condition. If neither a trap condition nor a
satisfied branch condition occurs during the execution of an
instruction, the next instruction is accessed from the location
pointed to by the updated instruction address. If a satisfied
branch condition occurs during the execution of a branch
instruction (and no trap condition occurs), the next instruc-
tion is accessed from the location pointed to by the effec-
tive address of the branch instruction. Thus, during execu-
tion of a branch instruction, the updated instruction address
is decremented, unchanged, or replaced, as determined by
the following critera:

1. Trap condition. A nonallowed operation trap condition
can occur during execution of a branch instruction, but
only if an attempt is made to access either a nonexis-
tent memory address or an address that is not available
to the slave program for instruction access. The trap
condition occurs in the following situations:

a. The branch instruction is indirectly addressed, but

- the address of the location containing the direct
address is either nonexistent or unavailable to the
slave program for read access.

b. The branch instruction is unconditional {or the
branch is conditional and the condition for the
branch is satisfied), but the effective address of
the branch instruction is unavailable to the slave
program for instruction access.

c. The effective address of any branch instruction
(conditional or unconditional) is nonexistent.

If any of the above situations occur, the computer
aborts execution of the branch instruction, decrements
the updated instruction address by 1, and traps to loca-
tion X'40'. In this case, the instruction address value
(IA) stored by the XPSD instruction in location X'40" is
the address of the aborted branch instruction.

2. No branch condition, If the branch instruction is con-
ditional, the condition for the branch is not satisfied,
and no trap condition occurs, the updated instruction
address remains unchanged. Then, instruction execu-
tion proceeds with the instruction pointed to by the
updated instruction address.

3. Branch condition. If the branch instruction is uncon-
ditional (or if the branch instruction is conditional and
the condition for the branch is satisfied) and no trap
condition occurs, the updated instruction address is
replaced by the effective virtual address of the branch
instruction. Then, instruction execution proceeds with
the instruction pointed to by the effective virtual ad-
dress of the branch instruction,

EXU EXECUTE
(Word index alignment)

* 67

G VT2 5Ta s 6 718 o 10 11117 13 14 15116 17 18 19120 21 22 23124 25 26 27128 2 30 31

X Reference address

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub-
ject instruction, including the processing of trap and in-
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU in-
struction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions maybe of any length,
and are processed (without affecting the updated instruction
address) unti! an instruction other than EXU is encountered.
After the final subject instruction is executed, instruction
execution proceeds with the next instruction in sequence
after the initial EXU (unless the subject instruction is an
LPSD or XPSD instruction, or is a branch instruction and
the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com-
puter processes the interrupt-servicing routine for the ac~
tive interrupt level and then returns program control to the
EXU instruction (or the intial instruction of a chain of
EXU instructions), which is started anew. Note that a pro-
gram is interruptible after every instruction access, includ-
ing accesses made with the EXU instruction, and the inter-
ruptibility of the subject instruction is the same as the
normal interruptibility for that instruction.

If a trap condition occurs between the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instruction, the computer traps to the appro-
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is the address of the
EXU instruction (or the initial instruction of a chain of

EXU instructions).

Affected: Determined by
subject instruction

Traps: Determined by
subject instruction

Condition code settings: Determined by subject instruction

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

* 69 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the current
condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro-
ceeds with the instruction pointed to by the effective ad-
dress of the BCS instruttion. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc-
tion in normal sequence.

Affected: (IA)ifCCnR#0

I CCn (g, 70, EVA 5 o) — IA

If CC n (1) =0, IA not affected

8-11
If the R field of BCS is 0, the next instruction to be exe-
cuted after BCS is always the next instruction in ascending
sequence, thus effectively producing a "no operation”
instruction.

BCR BRANCH ON CONDITIONS RESET
(Word index alignment)

Reference address

* 68 R X

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

BRANCH ON CONDITIONS RESET forms the logical pro-
duct (AND) of the R field of the instruction word and the
current condition code. If the logical product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective ad-
dress of the BCR instruction. However, if the logical pro-
duct is nonzero, the branch condition is unsatisfied and in-
struction execution then proceeds with the next instruction
in normal sequence.

Affected: (IA) if CCnR=0

If CC n (=0, EVA 1A

Dg_11 15-31
IF CCn (g_;; #0, IA not affected

If the R field of BCR is 0, the next instruction to be execu-
ted after BCR is always the instruction located at the effec-
tive address of BCR, thus effectively producing a "branch
unconditionally" instruction.

BIR BRANCH ON INCREMENTING REGISTER
(Word index alignment)

* 65 R X Reference address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 6120 21 22 23124 25 26 27128 29 36 31

BRANCH ON INCREMENTING REGISTER computes the
effective virtual address (EVA) and then increments the
contents of general register R by 1. If the result is a nega-
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BIR instruction. However, if
the result is zero or a positive value, the branch condition
is not satisfied and instruction execution proceeds with the
next instruction in normal sequence,

Affected: (R), (IA)

R)+1 —R

If Rlg =1, EVAj5.31 —IA
If (R)O =0, IA not affected

If the effective address of BIR is unavailable to the slave
program for instruction access and the branch condition is
satisfied, or if the effective address of BIR is nonexistent,

Execute/Branch Instructions 73

the computer aborts execution of the BIR instruction and
traps to location X'40', In this case, the instruction address
stored by the XPSD instruction in location X'40' is the vir-
tual address of the aborted BIR instruction. If the computer
traps because of instruction access protection, register R will
contain the value that existed justbefore the BIR instruction.

BDR BRANCH ON DECREMENTING REGISTER
{(Word index alignment)

” 64 R X Reference address

0 v 2 374 56 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 39 20 31

BRANCH ON DECREMENTING REGISTER computes the
effective virtual address (EVA) and then decrements the
contents of general register R by 1. If the result is a posi~
tive value, the branch condition is satisfied and instruction
execution then proceeds with the instruction pointed to by
the effective address of the BDR instruction, However, if
the result is zero or a negative value, the branch condition
is unsatisfied and instruction execution proceeds with the
next instruction in normal sequence.

Affected: (R), (1A)
®) - 1 — R
If (R)O = 0 and (R)]_3] #0, EVA

1531 1A

if (R)0 =1lor (R) =0, IA not affected

If the effective address of BDR is unavailable to the slave
program for instruction access and the branch condition is
satisfied, or if the effective address of BDR is nonexistent,
the computer aborts execution of the BDR instruction and
traps to location X'40'. In this case, the instruction address
stored by the XPSD instruction in location X'40! is the vir-
tualaddress of the aborted BDR instruction. If the computer
traps because of instruction access protection, register R will
contain the value that existed just before the BDR instruction.

BAL BRANCH AND LINK
(Word index alignment)

Reference address

* 6A R X

0 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

BRANCH AND LINK determines the effective virtual ad-
dress, loads the updated instruction address (the virtual ad-
dress of the next instruction in normal sequence after the
BAL instruction) into bit positions 15-31 of general regis-
ter R, clears bit positions 0-14 of register R to 0's and then
replaces the updated instruction address with the effective
virtual address. Instruction execution proceeds with the
instruction pointed to by the effective address of the BAL
instruction.

Affected: (R), (IA)

IA—— 1A

R15.3110 TRy 4 EVA 5 5 —

If the effective address of BAL is either nonexistent or is
unavailable to the slave program for instruction access,

74 Cal!l Instructions

the computer aborts execution of the BAL instruction (after
loading the updated instruction address into register R) and
traps to location X'40'. In this case, the instruction ad-
dress stored by the XPSD instruction in location X'40" s
the virtual address of the BAL instruction.

CALL INSTRUCTIONS

Each of the four call instructions causes the computer to
trap to a specific location for the next instruction in se~
quence. The four call instructions, their mnemonics, and
the locations to which the computer traps are:

Instruction Name Mnemonic Trap Location
CALL | CALI X'48'
CALL 2 CAL2 X'49'
CALL 3 CAL3 X'4A"
CALL 4 CAL4 X'4B'

Each of these four trap locations must contain an EXCHANGE
PROGRAM STATUS DOUBLEWORD (XPSD) instruction. Exe-
cution of XPSD in the trap location for a call instruction is
described under the XPSD instruction. If the XPSD instruc-
tion is coded with bit position 9 set to 1, the next instruc-
tion (executed after the XPSD) is taken from one of 16 pos-
sible locations, as designated by the value in the R field of

‘the call instruction. Each of the 16 locations may contain

an instruction that causes the computer to branch to o spe-
cific routine; thus, the four call instructions can be used to
enter any of as many as 64 unique routines.

CALl CALL 1
(Word index alignment)

* 04 R X

0 12 314 5 6 718 9 10 11112 13 14 5116 17 18 9120 21 22 23124 25 26 27128 29 30 a1

Reference address

CALL 1 causes the computer to trap to location X'48".

CAL2 CALL 2
(Word index alignment)

* 05 R X Reference address

0 1 2 31475 6 718 9 3w nnhiz 312 lSilé 17 18 l9i702| 22 23124725 26 27128 29 30 37

CALL 2 causes the computer to trap to location X'49",

CAL3 CALL 3
(Word index alignment)

* 06 R X Reference address

0 1 2 374 5 6 718 9 10 11112 13 14 15776 17 18 19120 27 22 23124 25 26 27128 29 30 37
CALL 3 causes the computer to trap to location X'4A",

CAL4 CALL 4
(Word index alignment)

* 07 R X Reference address

0 1 2 3745 6 718 ¢ 1017 12 13 1435116 17 18 19120 21 22 23i242526 27128 29 30 31

CALL 4 couses the computer to trap to location X'4B",

CONTROL INSTRUCTIONS

The following privileged instructions are used to control
the basic operating conditions of the SIGMA 6 computer:

Instruction Name Mnemonic
Load Program Status Doubleword LPSD
Exchange Program Status Doubleword XPSD
Load Register Pointer LRP

Move to Memory Control MMC
Wait WAIT
Read Direct RD

Write Direct wD

If execution of any control instruction is attempted while
the computer is in the slave mode (i.e., while bit 8 of the
current program status doubleword is a 1), the computer un-
conditionally aborts execution of the instruction (af the time
of operation code decoding) and traps to location X'40",

PROGRAM STATUS DOUBLEWORD

The SIGMA 6 program status doubleword has the following
structure when stored in memory:

FiF MIMID{A

F
CC |0fs|z|n|s|mimm0 0N IA
0 1 2 314 5 6 708 9 10 11012 13 14 5“617!81920212223242526272829”31
clte
0 Ojwx |0 1] 1] 0000

0000 0000 000 RP | 0000
32 33 34 35136 37 38 9140 @1 42‘3“4454647“649505!525354555657585960616263

Bit Desig-

Position nation Function

0-3 CcC Condition code

5 FS Floating significance mask
6 Fz Floating zero mask

7 FN Floating normalize mask

8 MS Master/Slave mode control
9 MM Memory Map mode control

10 DM Decimal arithmetic trap mask
11 AM Fixed-point arithmetic overflow trap mask
15-31 1A Instruction address
34,35 WK Write key
37 CI Counter interrupt group inhibit
- 38 11 1/O interrupt group inhibit
.39 El External interrupt inhibit
55-59 RP Register pointer

The detailed functions of the various portions of the SIGMA 6
program status doubleword are described under "Program
Status Doubleword" in Chapter 2.

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

al X Reference address |
"70 1Mz 13 14 |5i|6 17 18 19120 27 22 23124 25 26 27128 29 30 31

LOAD PROGRAM STATUS DOUBLEWORD replaces bits O
through 39 of the current program status doubleword with

bits O through 39 of the effective doubleword. The follow-
ing conditional operations are also performed:

* OE '

07 z3ti 5 5718

1. If bit position 8 (LP) of LPSD contains a 1, bits 55
through 59 of the current program status doubleword
(register pointer) are replaced by bits 55 through 59
of the effective doubleword; if bit 8 of LPSD is o 0,
the current register pointer value remains unchanged.

2. If bit position 10 (CL) of LPSD contains a 1, the
highest-priority interrupt level currently in the active
state is cleared (i. e., reset to either the armed state
or the disarmed state); the interrupt level is armed if
bit 11 of LPSD (AD) is a 1, or is disarmed if bit 11 of
LPSD is 0. If bit 10 of LPSD is a 0, no interrupt level
is aoffected in any way, regardless of whether bit 11
of LPSD is 1 or 0. (Interrupt levels are described in
detail under "Interrupt System" in Chapter 2,

Those portions of the effective doubleword that correspond
to undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (I)]0 =1

ED, ,— CC; ED5 —FS,FZ,FN

0-3 -7

EDs—‘—’ MS; ED9 — MM

ED]O——-——DM; ED] 1T AM

E — IA; ED WK

34-35
——CLILEL If (g =1, ED

Dl5-31

ED37.39
If (I)]0 =1 and (I)”
If (I)]0 =1 and (I)” =0, clear and disarm interrupt

355-59 kP

=1, clear and arm interrupt

XPSD EXCHANGE PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

X Reference address

12 13 14 lsilé 1718 19120 21722 23124 25 26 27128 25 30 31

01 2 3574 556 778 9 10

EXCHANGE PROGRAM STATUS DOUBLEWORD stores the
entire program status doubleword and then replaces the cur-
rent program status doubleword with a new program status
doubleword.

Use of the memory map in interpreting the XPSD instruction
address depends on the combined settings of bit 9 of the
current PSD and bit 10 of the XPSD instruction, and on
whether or not the XPSD is executed in an interrupt or trap
location as the result of an interrupt or trap:

1. Ifthe XPSD instruction is executed in an interrupt or
trap location, the map is used to interpret the indirect
reference address and the effective address if, and only
if, a1 is contained in bit positions 9 (MM) of the cur-
rent PSD and 10 (MP) of XPSD.

2. The same logic applies with one exception when the
instruction is not executed in an interrupt or trap lo-
cation. The exception is that if the program is in the
mapping mode (PSDg =1), the map is used to interpret
the indirect reference address regardless of the state

of XPSD1g.

Control Instructions 75

These conditions are summarized in the truth table shown
below. General information on memory addressing is con-
tained in Chapter 2 under "Memory Control Storage", "Mem-
ory Reference Addresses”, and "Memory Address Control®,

XPSD1o PSDg XPSD Address Type Map?
1 Ind. Ref, Addr. yes
I Effect. Addr. yes
0 Ind. Ref. Addr. no
Effect. Addr. no
1 Ind. Ref. Addr, no lyest
0 Effect. Addr. no
0 Ind. Ref. Addr. no
Effect. Addr, no

tr

t"Yes" only if XPSD not executed in an interrupt or

ap location,

The current program status doubleword is stored in the double-

word location pointed to by the effective address of XPSD
in the following form:

cC |ojE(5Iflemalniooo | 1A
0 1 2 314 56 718 9 10 11112 13 14 15116 17 18 19120 27 22 23124 25 26 27128 29 30 31

oo|wk(o|115/ 0000 0000 0000 00O | RP | 0000

32 33 34

35136 37 38 39140 47 42 43143 45 46 47148 49 50 51152 53 54 55156 57 58 59 160 61 62

The current program status doubleword is replaced by a new
program status doubleword as follows:

1.

The effective address of XPSD is incremented by 2, so
that it points to the next doubleword location. The ad-
dress thus generated is subject to the same mapping con-
sideration as the original effective address (i.e., mapping
is performed with the new address if bit 10 of XPSD is

+a 1 and bit 9 of the current program status doubleword

76

is also a 1; otherwise, mapping is not performed). The
contents of the next doubleword focation are referred
to as the second effective doubleword, or ED2.

Bits O through 35 of the current program status double-
word are unconditionally replaced by bits 0 through 35
of the second effective doubleword. The affected por-
tions of the program status doubleword are:

IE:sil'ion Designation Function

0-3 CcC Condition code

5-7 FS,FZ,FN Floating control

8 MS Master/slave mode control

9 MM Mapping mode control

10 DM Decimal arithmetic trap mask
11 AM Fixed-point arithmetic trap mask
15-31 1A Instruction address

34-35 WK Write key

A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword

Control Instructions

and bits 37 through 39 of the second effective double-

word,

Bit

Position Designation Function

37 ClI Counter interrupt inhibit
38 11 I/O interrupt inhibit

39 El External interrupt inhibit

If any (or all) of bits 37, 38, or 39 of the second effec~
tive doubleword are 0's, the corresponding bits in the
current program status doubleword remain unchanged;
if any (or all) of bits 37, 38, or 39 of the second effec~
tive doubleword are 1's, the corresponding bits in the
current program status doubleword are set to 1's. See
page 19 for adetailed discussion of the interrupt inhibits,

4. If bit position 8 (LP) of XPSD contains a 1, bits 55-59 of
the current program status doubleword (register pointer)
are replaced by bits 55 through 59 of the second effec—
tive doubleword; if bit 8 of XPSD is a 0, the current
register pointer value remains unchanged.

The following additional operations are performed on the new
program status doubleword if, and only if the XPSD is being
executed as the result of a nonallowed operation (trap to lo-
cation X'40') or a call instruction (trap to location X'48',
X'49', X'4A', or X'4B'):

1. Nonallowed operations — the following additional func~
tions are performed when XPSD is being executed as q
result of a trap to location X'40°;

a. Nonexistent instruction — if the reason for the trap
condition is an attempt to execute a nonexistent in-
struction, bit position 0 of the new program status
doubleword (CC1) is set to 1. Then, if bit 9 (A])
of XPSD is a 1, bit positions 15-31 of the new pro-
gram status doubleword (next instruction address)
are incremented by 8,

b. Nonexistent memory address — if the reason for the
trap condition is an attempt to access or write into
a nonexistent memory region, bit position 1 of the
new program status doubleword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad-
dress portion of the new program status doubleword
is incremented by 4.

¢. Privileged instruction violation — if the reason for
the trap condition is an attempt to execute a privi-
leged instruction while the computer is in the slave
mode, bit position 2 of the new program status double-
word (CCJ) is set to 1. Then, if bit position 9 of
XPSD is 1, the instruction address portionof the new
program status doubleword is incremented by 2.

d. Memory protection violation — if the reason for the
trap condition is an attempt to read from or write into
amemory region to which the program does not have
proper access, bit position 3 of the new program status
doubleword (CC4) issetto 1. Then, ifbit9 of XPSD
is a 1, the instruction address portion of the new
program status doubleword is incremented by 1.

There are certain circumstances under which two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their counter-
parts) are considered to be both nonexistent and privi-
leged: X'0C', X'0OD', X'2C', and X'2D'. If any one of
these operation codes is used as an instruction while
the computer is in the slave mode, CC1 and CC3 are
both set to 1's; if bit 9 of XPSD is a 1, the instruction
address portion of the new program status doubleword is
incremented by 10. If an attempt is made to access or
write into a memory region that is both nonexistent and
prohibited to the program by means of the memory con-
trol feature, CC2 and CC4 are both set to 1's; if bit 9
of XPSD is a 1, the instruction address of the new pro-
gram status doubleword is incremented by 5,

2. Call instructions — the following additional functions
are performed when XPSD is being executed as a result
of a trap to location X'48', X'49', X'4A', or X'4B':

a: The R field of the call instruction causing the
trap is logically inclusively ORed into bit posi-
tions 0-3 (CC) of the new PSD.

b. If bit position 9 of XPSD contains a 1, the R field
of the call instruction causing the trap is added
to the instruction address portion of the new PSD,

If bit position ¢ of XPSD contains a 0, the instruction ad-
dress portion of the new PSD always remains at the value
established by the second effective doubleword. Bit posi-
tion 9 of XPSD is effective only if the instruction is being
executed as the result of a nonallowed operation trap or a
call instruction trap. Bit position 9 of XPSD must be coded
with a 0 in all other cases; otherwise, the results of the
XPSD instruction are undefined.

Affected: (EDL), (PSD)

If (I)yg = 1, effective address is virtual

If (I)10 = 0, effective address is actual

PSD——EDL

ED2y_3 — CC; ED25_; — F$, FZ, FN

ED2g —— MS; ED2y — MM

ED2)5 ——DM; ED2); ——AM

ED237_39u CI, II, EI ——CI, 11, EI

If (I)8 =1, ED255__59 ——RP

If (I)g = 0, RP not affected

If nonexistent instruction, 1—— CC]1 then, if Dy =1,
IA+8 1A

If nonexistent memory address, 1—— CC2 then, if D=1,
IA +4 IA

If privileged instruction violation, 1-——— CC3 then,
if (1)9 =1, 1A+ 2 1A

If memory protection violation, 1—— CC4 then, if My=1,
IA +1 1A

If call instruction, CC uv CALLg.y} ——= CC then,
if (Do =1, IA+ CALLg-11——~IA

If (1)9 =0, IA not affected

LRP LOAD REGISTER POINTER
(Word index alignment, privileged)

* 2F X Reference address

01 2 314 5 6 7

T 7T Te 1316 17 18 19120 21 72 25128 35 5% H1m B % 5

LOAD REGISTER POINTER loads bits 23 through 27 of the
effective word into the register pointer (RP) portion of the
current program status doubleword, Bit positions O through
22 and 28 through 31 of the effective word are ignored, and
no other portion of the program status doubleword is affected.
If the register pointer is loaded with a value that points to a
nonexistent block of general registers, the computer subse-
quently generates either all 1's or all 0's as the contents of
the nonexistent block of general registers, whenever an in-
struction designates a general register by means of the Rfield
or the reference address field.

Affected: RP
EWo3_07 —RP

MMC MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue
_after interrupt)

* 6F R x\\é L Reference address

0 1 2 37875 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

MOVE TO MEMORY CONTROL loads a string of one or
more words into one of the three blocks of memory control
registers (memory control registers are described under
"Memory Address Control" in Chapter 2). Bitpositions 12-14
of MMC are not used as an index register address; instead,
they are used to specify which block of memory control reg-
isters is to be loaded, as follows:

Bit position
12 13 14 Function

1 0 0 Load memory map block addresses
0 1 0 Load access protection
0 0 1 Load memory write protection locks

If bit positions 12-14 of MMC contain either all 0's or more
than a single 1, the instruction produces an undefined result.
Also, if an attempt is made to load unimplemented memory
control storage, the contents of the general registers speci~
fied by the MMC instruction are undefined at the completion
of the instruction, and the implemented memory control stor-
age (if any) is not affected.

Bit positions 15-31 (reference address field) of MMC are ig-

nored insofar as the operation of the instruction is concerned,
and the results of the instruction are the same whether or not
MMC is indirectly addressed.

The R field of MMC designates an even-odd pair of general
registers (R and Rul) that are used to control the loading of

Control Instructions 77

the specified bank of memory control registers. Registers R
and Rul are assumed to contain the following information:

Register R:

Control image address

Cor 2 STa 5T e TUE 9 00 1112 13 14 15116 17 18 19120 21 22 23134 25 76 7138 5 30 37

Register Rul:
Control
Count
R Start
0 1 2 313 5 & 718 9§ 10 11112 13 14 15116 17 18 19120 31 23

Bit positions 15 through 31 of register R contain the virtual
address of the first word of the control image to be loaded
into the specified block of memory control registers. Bit
positions O through 7 of register Rul contain a count of the
number of words to be loaded. If bits 0-7 of register Rul
are initially al! O's, a word count of 256 is implied.)

Bit positions 15 through 22 of register Rul point to the be-
ginning of the memory region controlled by the registers to
be loaded. The significance of this field is different for the
3 modes of MMC,

The R field of the MMC instruction must be an even value
for proper operation of the instruction; if the R field of MMC
isan odd value, the operation of the instruction isundefined.

If MCCisindirectly addressed and the indirect reference ad-
dress is nonexistent, the nonallowed operation trap (location
X'40") is activated. The effective virtual address of the MMC
instruction however, is not used as a memory reference (thus
does not affect the normal operation of the instruction).

Affected: (R),(Rul), memory control storage

LOADING THE MEMORY MAP

The following diagrams represent the configuration of MMC,
register R, and register Rul that are required to load the
memory map:

The instruction format is:

0 6F R 10000000 0000 0000 0000

0O U 2 3T4a 5 6 718 9 10 11112 13 14 15116 17 18 19120 27 22 23124 25 26 27128 29 30 31

The contents of register R are:

0000 0000 0000 00O Map image address

0 1 2 314 56 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724725 26 27128 29 30 31

The contents of register Rul are:

Count |0000 000 C°:":;" 00000 0000
a

0 1 2 3Ta"5 6 708 9 10 112 13 14 15116 17 18 19120 21 22 23124725 26 27128 29 30 31

MEMORY MAP CONTROL IMAGE

The initial address value in bit positions 15-31 of register R
is the virtual address of the first word of the memory map
control image. The word length of the control image to be
loaded is specified by the initial count in bit positions 0-7
of registerRul. Aword count of 64 is sufficient to load the
entire block of memory map control registers, The memory map
control registers are treated as a circular set, with the first
register following the last; thus, a word count greater than
64 causes the first registers loaded to be overwritten.

78 Control Instructions

Each word of the memory map control image is assumed to
be in the following format:

Page Page Page Page
address address address address
0 v 2 374 5 6 718 9 10 12 13774 1506 17 18 19120 2V 22 23124 25 26 27128 29 30 31

MEMORY MAP LOADING PROCESS

Bit positions 15-22 of register Rul initially points to the first
512-word page of virtual addresses that is to be controlled
by the map image being loaded. MMC moves the map image
into the memory map control registers one word at a time, thus
loading the page address for four consecutive memory map
registers with each image word. As each word is loaded into
the memory map, the virtual address of the image area is in-
cremented by 1, the word count is decremented by 1, and the
value in bit positions 15-22 of register Rul is incremented by
4; this process continues until the word count is reduced to 0,
When the loading process is completed, bit positions 15-31 of
register R contain avalue equal to the sum of the initial map
image address plus the initial word count, Also, bit positions
0-7 of register Rul contain all 0's, and bit positions 15-22 of
register Rul contain a value equal to the sum of the initial
contents plus 4 times the initial word count.

LOADING THE ACCESS PROTECTION CONTROLS

The followingdiagrams represent the configurations of MMC,
register R, and register Rul that are required to load the ac-
cess protection controls:

The instruction format is:

0 6F R 101 0,0 000 0000 0000 0000

0 1 2 3Ta 578 718 9 10 11112 13 14 15116 17 18 W10 27 22 23154 75 3% 27128729 30 31

The contents of register R are:

0000 0000 0000 000 |Program control image address

0 12 37456 718 9 10 11112 13 14 15116 17 18 19120 21 22 23128 25 36 37138 29 30 31

The contents of register Rul are:

Count (0000 000 <™ 1660 0000 000¢

0 12 3i4 5 6 718 970 12 13 14 15i|6 17 18 19120 21 22 23?2425 26 27?28 29 30 31

ACCESS PROTECTION CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the access control image, and the word
length of the first control image is specified by the initial
count in register Rul, A word count of 16 is sufficient to
load the entire block of access protection control registers.
The access protection control registers are treated as a cir-
cular set, with the first register following the last; thus, a
word count greater than 16 causes the first registers loaded
to be overwritten, Each word of the access control image
is assumed to be in the following format:

ACIACIAC|ACIACIAC|AC|AC|AC|ACIAC|ACIAC|AC|ACIAC

01 2 3le 5 6718 9 1011 12\314151617Iﬂ1920212223242526272829303|

ACCESS CONTROL LOADING PROCESS

Bit positions 15-20 of register Rul initially point to the first
512-word page of virtual addresses that is to be controlled

by the access control image. MMC moves the access con-
trol image into the access control registers one word at a
time, thus loading the controls for 16 consecutive 512-word
pages with each image word., As each word is loaded, the
virtual address of the control image is incremented by 1,
the word count is decremented by 1, and the value in bit
positions 15-20 of register Rul is incremented by 4; this
process continues until the word count is reduced to 0. When
the loading process is completed, registerR contains a value
equal to the sum of the initial control image address plus the
initial word count. Also, the final word count is 0, and bit po-
sitions 15-20of register Rul contain a value equal to the sum
of the initial contents plus 4 times the initial word count.

LOADING THE MEMORY WRITE PROTECTION LOCKS

The following diagrams represent the configuration of MMC,
register R, and register Rul that are required to load the
memory write protection locks:

The instruction format is:

0 6F R 10]0{10 0000 0000 0000 0000

0 1 2 3F4 5 6 778 5 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

The contents of register R are:

0000 0000 0O0OCO OOOI Lock image address

Il
0 1 2 3la "5 ¢ 718 9 10 11712 13 14 15116 17 18 19120 21 22 23124 25726 27128 29 30 31

The contents of register Rul are:

Count 0000 000| €l 1600 0000 0000
Start

0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

MEMORY LOCK CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the memory lock control image, and word
length of the image is specified by the initial count in reg-
ister Rul. A word count of 16 is sufficient to load the en-
tire block of memory locks. The memory lock registers are
treated as a circular set, with the register for memory ad-
dresses O through X'1FF' immediately following the register
for memory addresses X'1FEQQ" through X'1FFFF'; thus, o
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the lock image is assumed
to be in the following format:

WLIWLWLWL (WLIWLWLIWL{WLWL _YV_L,WL wLwLiwLWL

01 2 314 5 6 718 9 10 11213 1415176 17 18 19120 21 22 23124 25 26 27128 29 30 31

MEMORY LOCK LOADING PROCESS

Bit positions 15-20 of register Rul initially point to the first
512-word page of actual core memory addresses that is to
be controlled by the memory lock image. MMC moves the
lock image into the lock registers 1 word at a time, thus
loading the locks for 16 consecutive 512-word pages with
each image word. As each word is loaded, the virtual ad-
dress of the lock image is incremented by 1, the word count
is decremented by 1, and the value in bit positions 15-20
of register Rul is incremented by 4; this process continues
until the word count is reduced to 0. When the loading
process is completed, register R contains a value equal to

the sum of the initial lock image address plus the initial
word count. Also, the final word count is 0, and bit posi-
tions 15-20 of register Rul contain a value equal to the sum
of the initial contents plus 4 times the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interrupted after each word
of the control image has been moved into the specified con-
trol register. Immediately prior to the time that the instruc-
tion in the interrupt (or trap) location is executed, the
instruction address portion of the program status doubleword
contains the virtual address of the MMC instruction, register
R contains the virtual address of the next word of the control
image to be loaded, and register Rul contains a count of the
number of control image words remaining to be moved and a
value pointing to the next memory control register to be
loaded.

WAIT WAIT
(Word index alignment, privileged)

X Reference address

12 33 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

* 2E

01 2 314 5 6 7

WAIT causes the CPU to cease all operations until an inter-
rupt activation occurs, or until the computer operator man-
vally moves the COMPUTE switch (on the processor control
panel or on the free-standing console) from the RUN posi-
tion to IDLE and then back to RUN. The instruction ad-
dress portion of the PSD is updated before the computer
begins waiting; therefore, while the CPU is waiting, the
INSTRUCTION ADDRESS indicators contain the virtual ad-
dress of the next location in ascending sequenceafter WAIT
and the contents of the next location are displayed in the
DISPLAY indicators (on the processor control panel and on
the free-standing console). If any input/output operations
are being performed when WAIT is executed, the operations
proceed to their normal termination.

When an interrupt activation occurs while the CPU is wait-
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next instruction
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction
in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence
after the WAIT instruction. When the COMPUTE switch

is moved from RUN to IDLE and back to RUN while the
CPU is waiting, instruction execution proceeds with the
next instruction in sequence after the WAIT instruction.

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap (loca-
tion X'40') is activated. The effective virtual address of
the WAIT instruction, however, is not used as a memory
reference (thus does not affect the normal operation of the
instruction).

Control Instructions 79

RD READ DIRECT
(Word index alignment, privileged)

N I Reference address
6C R X n
) | | Mode Function
0 1 2 314 5 & 718 9 10 1113213 14 15116 17 18 15120 21 22 23124 25 26 27123 25 30 3

The CPU is capable of directly communicating with other
elements of the SIGMA 6 system, as well as performing in-
ternal control operations, by means of the READ DIRECT/
WRITE DIRECT (RD/WD) lines. The RD/WD lines consist
of 16 address lines, 32 data lines, 2 condition code lines,
and various control lines, that are connected to various
CPU circuits and to special systems equipment,

READ DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the
SIGMA 6 system on the RD/WD address lines. Bits 16~31
of the effective virtual address identify a specific element
of the SIGMA 6 system that is expected to return informa-
tion (2 condition code bits plus a moximum of 32 data bits)
to the CPU. The significance and number of data bits re-
turned to the CPU depend on the selected element. If the
R field of RD is nonzero, up to 32 bits of the returned data
are loaded into general register R; however, if the R field
.of RD is 0, the returned data is ignored and general regis-
ter 0 is not changed. The condition code is set by the ad-
dressed element, regardless of the value of the R field.

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 Mode

0 O 0 O |Internal computer control
0 0 0 1 Unassigned
0 O 1 0 XDS testers
0O 0 1 1 . .
. Assigned to various groups of standard
XDS products
1 1 0
1 1 1 Special systems control (for customer use

with specially designed equipment)

If bits 16-19 of the effective virtual address are nonzero
(mode 1 through mode F), CC1 and CC2 are set to zero and
CC3 and CC4 are set according to the state of the two con-
dition code lines from the external device.

READ DIRECT INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code is unconditionally set ac-
cording to the states of the four SENSE switches on the pro-
cessor control panel. If a particular SENSE switch is set,
the corresponding bit of the condition code is set to 1;ifa
SENSE switch is reset, the corresponding bit of the condi-
tion code is set to 0 (see "SENSE" in chapter 5).

READ SENSE SWITCHES

The following configuration of RD can be used to read the
controf panel SENSE switches:

Reference address

*6C R 1 X F10000000000000000

C v 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 27 22 23124 25 26 27128 29 30 a1

In this case, only the condition code is affected.

80 Control Instructions

READ AND RESET MEMORY FAULT INDICATORS

Each core memory module is associated witha MEMORY FAULT
indicator that is turned on whenever o memory parity or over-i
temperature condition occurs. The following configuration
of RD is used to record and reset the MEMORY FAULT indj-
cators.

[Reference address
% ~
6C R | X [70600]0000100010500

T 1 2z 314 56 718 9 101 12 13 14 15116 17 18 191207 21 22 23124 25 26 27126 29 30 37

If the R field of RD is nonzero, bit positions 0-23 of register
R are reset to all 0's, bit positions 24-31 are set according
to the current states of the MEMORY FAULT indicators, and
all MEMORY FAULT indicators are reset. If a bit position
in register R is set to 1, a memory fault has been detected
in the corresponding core memory module, If the R field of
RD is O, the MEMORY FAULT indicators and the contents
of register O remain unchanged (although the condition code
is still set to the value of the SENSE switches). The MEM-
ORY FAULT indicators are also reset by means of the SY$
RESET/CLEAR switch on the processor control panel.

Affected: (R), CC, MEMORY FAULT Indicators

WD WRITE DIRECT
(Word index alignment, privileged)

Reference address

* 6D R X

Function

12 1314 15116 17718719120 21 22 23124 25 26 27128729 30 31

—_—
01 2 3745 6-718 9 1011

WRITE DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the SIG-
MA 6 system on the RD/WD address lines (see READ DIRECT),
Bits 16-31 of the effective virtual address identify a specific
element of the SIGMA 6 system that is to receive control jn-
formation from the CPU. If the R field of WD is nonzero,
the 32-bit contents of register R are transmitted to the speci-
fied element on the RD/WD data lines. If the R field of
WD is 0, 32 0's are transmitted to the specified element (in-
stead of the contents of register 0). The condition code s
set by the addressed element, regardless of the value of the
R field.

Bits 16-19 of the effective virtual address determine the
mode of the WD instruction, as follows:

Bit Position
16 17 18 19 Mode

0 0 O O |Internal computer control

0 0 0 1 Interrupt control

0 0 1 0 XDS testers

0o o0 1 1
Assigned to various groups of standard
XDS products

—_
—
—
o

Special systems control (for customer use
with specially designed equipment)

If bits 16-19 of the effective virtual address are nonzero
(mode 1 through mode F), CC1 and CC2 are set to zero and
CC3 and CC4 are set according to the state of the two con-
dition code lines from the external device.

WRITE DIRECT INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the condition code is unconditionally set
according to the states of the four SENSE switches on the
processor control panel. If a particular SENSE switch is
set, the corresponding bit of the condition code is set to 1;
if a SENSE switch is reset, the corresponding bit of the
condition code is reset to 0 (see "SENSE" in Chapter 5).

SET INTERRUPT INHIBITS

The following configuration of WD can be used fo set the
interrupt inhibits (bit positions 37-39 of the PSD).

x| D R | x | _Reference address
| 1000070000 [0011 [0ICTT[E

O 12 3Ta 5 6 718 9 10 112 1314 15116 17 8 9120 37 22 23124 25 26 27128 29 30 31

A logical inclusive OR is performed between bits 29-31 of
the effective virtual address and bits 37-39 of the PSD. If
any (or all) of bits 29-31 of the effective virtual address are
l's, the corresponding inhibit bits in the PSD are set to 1's;
the current state of an inhibit bit is not affected if the cor-
responding bit position of the effective virtual address con-
tains a 0,

RESET INTERRUPT INHIBITS

The following configuration of WD can be used to reset the
interrupt inhibits:

* 6D R G Reference address

1000070000 0010]0lcli[E]
0 12 314 5 6718 9 10 1l12 13 14 15116 17 18 19120 31 37 3124 2526 27128 & 30 3
If any (or all) of bits 29-31 of the effective virtual address
are 1's the corresponding inhibit bits in the PSD are reset to
0's; the current state of an inhibit bit is not affected if a
corresponding bit position of the effective virtual address
contains a 0,

SET ALARM INDICATOR

The following configuration of WD is used to set the ALARM
indicator on the maintenance section of the processor con-
trol panel:

Reference address

Y| ¢D R X IT0000]0000]0100 0007

0 1 2 3T4 5 6 718 9 10 i1 13 14 35116 17 18 19120 21 22 23124 25 26 2/128 29 30 31

If the COMPUTE switch on the processor control panel isin the
RUN position and the AUDIO switch on the maintenance sec-
tion of the processor control panel is in the ON position, a
1000-Hz signal is transmitted to the computer speaker. The
signal may be interrupted by moving the COMPUTE switch
to the IDLE position, by moving the AUDIO switch to the
OFF position, or by resetting the ALARM indicator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

‘ Reference address
* éD

O 12 34 576 718 9 wwnhzi3 14 15Th6 17718 19120 21 22 23124 25 26 27128 29 30 31

The ALARM indicator isalso reset by means of either the CPU
RESET/CLEAR switch or the SYS RESET/CLEAR switch on the

processor control panel.

TOGGLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to “toggle" the
CPU program~controlled-frequency (PCF) flip~flop:

Reference address

* T
6D R | X [Toooo o000 o100]0010

O 12 3Ta 76 718 9 10 11112 13 14 15136 7 18 w120 21 0 itoa o ae o e

The output of the PCF flip-flop is transmitted to the computer
speaker through the AUDIO switch on the maintenance section
of the processor control panel. If the PCF ip-flop isreset when
the above configuration of WD is executed, the WD instruction
sets the PCF flip~flop; if the PCF flip-flop was previously set,
the WD instruction resets it. A program can thus generate a
desired frequency by toggling (setting and resetting) the PCF
flip-flop at the appropriate rate. Execution of the above
configuration of WD also resets the ALARM indicator.

WRITE DIRECT, INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to set and reset
the various states of the individual interrupt levels within
the CPU interrupt system:

* ~
6D R X [1000110¢ode[6000 [Grovp

LR YA F TR SV N VEETY STRR T AN TR T) 5 Taes) 2312472426 27128 27 a0 ar

Bits 28 through 31 of the effective address specify the iden-
tification number (see Table 2) of the group of interrupt
levels to be controlled by the WD instruction.

The R field of the WD instruction specifies ageneral register
that contains the selection bits for the individual interrupt
levels, excluding Power on/Power off, within the specified
group (see Table 2). Bit position 16 of register R contains the
selection bit for the highest-priority (lowest-numbered) in-
terrupt level within the group, andbit position 31 of register R
contains the selection bit for the lowest-priority (highest-
numbered) interrupt level within the group. Each interrupt
level in the designated group isoperated on according to the
function code specifiedbybits 21 through 23 of the effective
addressof WD. The codes and their associated functionsare as
follows:

Code Function
000 Undefined

001" Disarm all levels selected by a 1; all levels selected
by a 0 are not affected.

010" Arm and enable all levels selected by a 1; all levels
selected by a 0 are not affected.

011" Arm and disable all levels selected by a1; all levels
selected by a 0 are not affected.

100 Enable all levels selected by a 1; all levels selected
by a 0 are not affected.

101 Disable all levels selected by a 1; all jevelsselected
by a O are not affected.

t . .

These codes clear the current interrupt, i.e., remove from
the active or waiting state all levels selected by a 1 (see
Figure 7).

Control Instructions 81

Code Function

110 Enable ali levels selected by a 1 and disable all
levels selected by a 0.

111 Trigger all levels selected by a 1. All such levels
that are currently armed advance to the waiting state.

INPUT/OUTPUT INSTRUCTIONS

"Standard” SIGMA 6 1/O refers to the normal 1/O system

consisting of input/output processors, device controllers,
and devices. This system handles normal communications
with standard peripherals such as printers, disks, tapes,
and so forth. When dealing with standard 1/O operations,
the CPU uses the following five instructions:

Instruction Name Mnemonic
Start Input/Output SIO
Halt Input/Output HIO
Test Input/Output TIO
Test Device TDV

Acknowledge Input/Output Interrupt AIO

If execution of any input/output instruction is attempted while
the computer is in the slave mode (i.e., while bit 8 of the
current program status doubleword is a 1), the computer un-
conditionally aborts execution of the instruction (at the time
of operation code decoding) and traps to location X'40',

1/0 ADDRESSES

The device to be operated on by anl/Qinstruction is selected
by the effective virtual address of the I/Qinstruction itself.
Indirect addressing and/or indexing are performed, as for
other word-addressing instructions, to compute the effective
virtual address of the 1/O instruction. However, the effec-
tive address is not used as a memory reference (i.e., not
subject to memory mapping). For the SIO, HIO, TIO, and
TDV instructions, the 11 low-order bits of the effective vir-
tual address constitute an I/O address. For the AIO instruc-
tion, the device causing the interrupt returns its 11-bit /O
address as part of the response to the AIO instruction.

An 1/O address occupies bit positions 21 through 31 of the
effective virtual address, with bits 21 + 22, and 23 of the /O
address specifying one of eight possible IOPs that can be con-
trolledby a CPU. The remainder of the 1/O address is factored
into one of two forms, depending on bit 24, as follows:

Case 1: Single-unit device controllers (bit 24 is 0)

x| Operation R Reference address

Code X

01 2318355 7185 70T T2 1314 15116 17 18 19120 37 22 3154 55

Device
26 27128 2930 31
Bits 25 through 31 of the 1/O address (DC/Device) consti-
tute a single code specifying a particular combination of
device controller and device. Normally these codes refer
to device controllers that drive only a single device, such
as card readers, card punches, line printers, etc.

Case II: Multiunit device controllers (bit 24 is 1)

»| Operation R X Reference address

Code el IOPIIT DC] D
23T e T s 10 itz 13 e 15 hie 19726 21 22 23 24 25 26 27128729 30 31

82 Input/Output Instructions

Bit positions 25 through 31 of the 1/O address contain o
3-bit device controller code (DC) in bit positions 25-27
and a 4-bit device code (Device) in bit positions 28-31.
This form of 1/O address is used for device controllers (such
as magnetic tape and rapid access data file controllers) that
control information exchange with only onedevice at a time
(out of a set of as many as 16 devices).

I/0 UNIT ADDRESS ASSIGNMENT

Device controller numbers are normally assigned to a multi-
plexor IOP in numerical sequence, beginning with zero and
continuing through the highest number recognized by the IOP
(i.e., X'7', X*F', X'"17', or X'IF'). In the case of multiunit
device controllers, the device controller number must be in the
range X'0' through X '7' because the 1/O address field structure
allows for a 3-bit multiunit device controller number. In the
case of single-unit device controllers, any of the available
numbers in the range X0 through X'1F' may be assigned to
the device controller, providing that the same number has not
already been assigned to a multiunit device controller. For
example, if device controller number X'0' s assigned to a
magnetic tape unit controller, the number X'0' cannot also
be used for a card reader (although the coding of the 1/O
address field would be different in bit position 24). Thel/O
address codes used by standard XD$ software are

I/O address Peripheral device designation

X'080* .IOP 0, device controller 0, magnetic tape
unit 0

X'081! IOP 0, device controller 0, magnetic tape
unit 1

X'087! IOP 0, device controller 0, magnetic tape
unit 7

X'001' IOP O, device controller 1, keyboard/printer

X'002' IOP 0, device controller 2, line printer

X'003' IOP 0, device controller 3, card reader

X'004' IOP 0, device controller 4, card punch

X'005* IOP 0, device controller 5, paper tape
reader/punch

1/0 STATUS RESPONSE

All 1/0 instructions result in the setting of condition code
CC1 and CC2 to denote the nature of the I/O response.
The R field of the 1/O instruction specifies one of the gen-
eral registers that is to accept additional I/O response in-
formation during the execution of an I/O instruction. In
some situations, the programmer may want two sets of re~
sponse information loaded into the general registers, while
in other situations he may want only one set, or even no
information loaded into a general register, This control is
achieved by coding the R field of the I/O instruction. One
set of response information is loaded jnto register R and an-
other set may be loaded into register Rul. If the R field is
an even, nonzero number, registers R and R + 1 are each
loaded with response information. If the R field specifies

an odd-numbered general register, then only register R is
lcaded with response information. However, if the R field
is 0, R and Rul are not loaded with response information,
Also, if R#0 and CC1is set to 1 as a result of the opera-
tion, no status information is returned to R and Rul. The
1/O response information loaded into the general register
for SIO, HIO, TIO, and TDV instructions isin the following
format:

Word into register R

Current command
0000 0000 0000 0000 doubleword address

0 v 2 3t4a 5 6 718 9 w0 112 13 14 15716 17 18 19120 21 22 23124 2526 27128 29 30 31

Word into register Rul

Status Byte count

0 7 2 374 56 718 9 10 N1213 12 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Current Command Doubleword Address. After the addressed
device has received an order, this field contains the 16
high-order bits of the core memory address for the command
doubleword (see *"1OP Command Doublewords") currently
being processed for the addressed device.

Statys. The meaning of this field depends on the particular
1/0 instruction being execu*ed and upon the selected 1/0O
device (see Table 8),

Byte Count. After the addressed device has received an
order, this field contains a count of the number of bytes yet
to be transmitted to or from memory by the operation called
for by the order.

See the AIO instruction description for the format of /O
response information for AIO,

Sio START INPUT/OUTPUT
(Word index alignment, privileged)

Reference address

*|
4C R X 1/O address

0 12 314 5 6 718 9 1017 1213 14 1516 17 18 19l20 21 22 23124 25 26 27128 29 30 31
‘.

START INPUT/OUTPUT is used to initiate an input or out-
put operation with the device selected by the I/O address
(bits 21-31 of the effective virtual address of the instruction),

SIO utilizes data in general register 0, which is assumed
to have the following content when SIO is executed.

and the device is started {i.e., advanced to the "busy "
condition). If the SIO is accepted, the first command
doubleword address is loaded into the IOP command address
counter associated with the device controller specified by
the 1/0 address of the SIO instruction. Then, if the device
is in the "automatic" mode, it requests an order from the
IOP. The IOP loads the first command doubleword of the
1/O command list into its appropriate registers and transmits
the order to the device.

The CPU condition code provides an indication of whether
the 1/O address specified by the SIO instruction was or was
not recognized by the 1/O system and whether the SIO in-
struction was or was not accepted by the device (i. e., whether
the device did or did not advance to the "busy" condition).

The condition code settings for SIO are:
1 2 3 4 Result

0 - - 1/O addressrecognized and SIO accepted
1 - - 1/O address recognized but SIO not
accepted
1 0 - - 1OP address recognized but device con-

troller either is attached to a "busy"
selector IOP that cannot return status at
this time or, for specific device con-
trollers, is currently "busy" with another
device. No status information isreturned
to general registers.

1/0 address not recognized and SIO not
accepted; no status information isreturned
to general registers.

STATUS INFORMATION FOR SI0

In the event that the SIO instruction was not accepted
(i.e., CC1 =0 and CC2 = 1), thestatusinformation returned
as a part of the 1/O response provides indications of ‘why
the SIO instruction was not accepted, If the SIO instruction
has been coded with an R field value of 0, or if CCI (os a
result of the execution of this instruction) is a 1, only the
condition code settings are available. If the R field value
is odd, register R contains the following information:

Status Byte count
D R R R 1) 2 I T 3 T v o e S R ArC o I

Bit
Position Function

First command

0000 0000 0000 0000 doubleword address

0 1V 2 3Ta 576 718 5 10 1111z 13 14 15176 17 18 19720 21 22 23124 2526 27128 29 30 a1

General register 0 is temporarily dedicated during the exe-
cution of an SIO instruction to specify the starting double-
word address for the 10P command list. The doubleword
address in register 0 is the 16 high-order bits of a memory
address; thus, the address in register 0 always specifies an
even-numbered word location. (The IOP command list is
described in "IOP Command Doublewords"”, Chapter 4.)

If 1/O address recognition exists in the 1/O system, and the
device controller and device are in the "ready" condition
and no interrupt condition is pending, the SIO is accepted

0 Interrupt pending: if this bit is 1, the addressed
device has requested an interrupt and the inter-
rupt has not been acknowledged by an AIO in-
struction. 1/O interrupts can be achieved by coding
of the flag portion of the 1/O command double-
word. 1/O interrupts can also be achieved by using
M modifiers in the basic order to the device (M bits
in the Order portion of the command doubleword).
In either case, the device will not accept a new
SIO instruction until the interrupt-pending condi-
tion is cleared (i.e., the condition code settings
for the SIO instruction will indicate "SIO not
accepted" if the interrupt-pending condition is
present in the addressed device.

Input/Ovutput Instructions 83

Table 8. Status Bits for I/O Instructions

Position and State in Register Rul

Device Status Byte Operational Status Byte Significance for Significance
01 2 3 4 5 5 7 8 9 1011 12131415 SIO, HIO, and TIO for TDV
1 - - - - - - - - - - .- - - - - interrupt pending
-0 0 - - - - - - - - - - - - - device ready
-0 1 - - - - - - - - - - - - - device not operational
- 10 - - - - - - - - - - - - - device unavailable
-1 1 - - - - - - - - - - - - - device busy
- - -0 - - - - - - - - - - - - device manual
- - -] - - - - - - - - - - - = device automatic unique to the
. device and the
- - - = - - - - - - - - - - - device unusual end device controller
- - - - -0 0 - - - - - - - - - device controller ready
- - - - -0 1 - - - - - - - - - device controller not operational
- - - - - 10 - - - - - - - - - device controller unavailable
- - - - -1 1 - - - - - - - - - device controller busy
- - = - - - - - - - - - - - - unassigned
- - - - - - - - 1 - - - - - - - incorrect length
- - - . - - - - -1 - - - = - = transmission data error
- - - - - e - - - -1 - - - = = transmission memory error
- - - - - - - = - - -1 - - - - memory address error same as for
SIO, HIO, and
- - - - - - - - - - - - 1 - - - IOP memory error TIO
.- e - - - - - - - - - - -1 - - IOP control error
- - - - - - - - - - - - - -1 - IOP halt
- - - - - - - - - - - - - - - Selector IOP busy

Position and State in Register R

Device Status Byte Operational Status Byte
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 Significance for AIO

$ unique to the device and

- - - - 1 - - - - - - - - - - - the device controller

- - - - - - - - - - - - - - -

- - - - - - - - 1 - - - - - - - incorrect length

- - - - - - - - -1 - - - - - - transmission data error
- - - - - - - - - - 1 - - - - - zerobyte count interrupt
- - - - - - - - - - =] - - - - channel end interrupt

- - - - - - - - - - - 1 - - - unusual end interrupt

- - - - - - - - - - - - --0-}unossigned

Input/Output Instructions

Bit

Position Function

1,2

5,6

Device condition: if bits 1 and 2 are 00 (device
"ready"), all device conditions required for proper
operation are satisfied. If bits 1 and 2 are 01
(device "not operational"), the addressed device
has developed some condition that will not allow
it to proceed; in either case, operator intervention
is usually required. If bits 1 and 2 are 10 (device
"Unavailable"), the device has more than one
channel of communication available and it is en-
gaged in an operation controlled by a controller
other than the one specified by the 1/O address.
If bits 1 and 2 are 11 (device "busy"), the device
has accepted a previous SIO instruction and is al-
ready engaged in an 1/O operation.

Device mode: if this bit is 1, the device is in the
"automatic" mode; if this bit is 0, the device is
in the “manual" mode and requires operator inter-
vention. This bit can be used in conjunction with
bits 1 and 2 to determine the type of action re-
quired, For example, assume that a card reader
is able to operate, but no cards are in the hopper.
The card reader would be in state 000 (device
"ready”, but manual interventionrequired), where
the state is indicated by bits 1, 2, and 3 of the
1/O status response. If the operator subsequently
loads the card hopper and presses the card reader
START switch, the reader would advance to state
001 (device "ready" and in automatic operation).
If the card reader is in state 000 when an SIO in-
struction is executed, the SIO would be accepted
by the reader and the reader would advance to
state 110 (device "busy", but operator intervention
required). Should the operator then place cards
in the hopper and press the START switch, the card
reader state would advance to 111 (device "busy"
and in automatic operation), and the input opera-
tion would proceed. Should the card reader sub-
sequently become empty (or the operator press the
STOP switch) and command chaining is being used
to read a number of cards, the card reader would
refurn fo state 110. If the card reader is in state
001 when an SIO instruction is executed, the
reader advances to state 111, and the input-opera-
tion continues as normal. Should the hopper sub-
sequently become empty (or should the operator
press the card reader STOP switch) and command
chaining is being used to read a number of cards,
the reader would go to state 110 until the operator
corrected the situation.

Unusual end: if this bit is 1, the previous I/O op-
eration terminated in an "unusual end" condition.
These conditions vary from device to device (see
the applicable peripheral reference manual).

Device controller condition: if bits 5and 6 are 00
(device controller "ready"), all device controller
conditions required for its proper operation are

satisfied. If bits 5 and 6 are 01 (device controller

Bit

Position Function

56
(cont.)

10

1

"not operational"), some condition has developed
that does not allow it to operate properly. In
either case, operator intervention is usually re-
quired. If bits 5 and 6 are 10 (device controller
"unavailable"), the device controller is currently
engaged in an operation controlled by an IOP
other than the one addressed by the I/O instruction.
If bits 5 and 6 are 11 (device controller "busy"),
the device controller has accepted a previous
SIO instruction and is currently engaged in per-
forming an operation for the addressed 10P.

Reserved

Incorrect length: if this bit is 1, an incorrect
length condition has been detected during the
previous operation. Incorrect length is caused
by a channel end (or end of record) condition
occurring before the device controller has re-
ceived a "count done" signal from the IOP, or is
caused by the device controller receiving a count
done signal before channel end (or end of record);
e.g., count done before 80 columns have been
read from a card. Normally, a count done signal
is sent to the device controller by the IOP to in-
dicate that the byte count associated with the
current operation has been reduced to zero. The
IOP is capable of suppressing an error condition on
incorrect length, since there are many situations
in which incorrect length is a legitimate situation
and not a true error condition. Incorrect length is
suppressed as an error by coding the SIL flag (a 1
in bit 38) of the IOP command doubleword (see
"Flags", Chapter 4). At the end of the execution
of an I/O command list, this status bit is 1 if an
incorrect length condition occurred anywhere in
the command list, regardless of the coding of the
SIL flag.

Transmission data error: this bit is set to 1 if the
IOP or device controller has detected a parity
error or data overrun in the transmitted informa-
tion. At the end of an execution of an 1/O com-
mand list, this status bit is 1 if a transmission data
error occurred anywhere in the command list.

Transmission memory error: this bit is set to 1 if

a memory parity error has occurred during a data
input/output operation. A parity error is detected
on any output operation and on partial-word input
operations. At the end of an execution of an I/O
command list, this status bit is 1 if a transmission
memory error occurred anywhere in the command
list. A device halt occurs only if the HTE flag
in the IOP command doubleword is set to 1 (see
"Flags", Chapter 4).

Memory address error: a nonexistent memory address

has been encountered on either data or commands.
Operation is terminated with an "unusual end".

Input/Output Instructions 85

Bit
Position Function

12 IOP memory error: if a memory parity error has
occurred while the IOP was fetching a command,
this bit is set to 1. Operation is terminated with
an "unusual end".

13 1OP control error: this bit is set to 1 if the IOP
has encountered two successive TRANSFER IN
CHANNEL commands.

14 1OP halt: this bit is set to 1 if the IOP has issued

a halt order to the addressed 1/O device because
of an error condition.

15 Selector IOP busy: this bit is set to 1 if a selector
IOP is addressed by the 1/O instruction and the
selector IOP is currently in use by some 1/0 de-
vice. The selector IOP is considered to be in use
from the time that a device accepts an SIO in-
struction until the operation is completed.

16-31 Byte count: a count of the number of bytes yet to
be transmitted to or from memory in the operation
called for by the current command doubleword.

If the R field value of the SIO instruction is even and not
0, the condition code and register Rt1 contain the informa-
tion described above and register R contains the following
information:

0000 0000 0000 O0000| Current command address

O 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Bit

Position Function

16-31 Current command doubleword address: the 16
high-order bits of the core memory address from

which the command doubleword for the 1/O opera-

tion currently being processed by the addressed
device controller was fetched.

HIO HALT INPUT/OUTPUT
(Word index alignment, privileged)

Reference address

* 4F R X 1/O address

0 1 2 314 5 6 718 9 10 11172 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 3

HALT INPUT/OUTPUT causes the addressed device to im-
mediately halt its current operation (perhaps improperly, in
the case of magnetic tape units, when the device isforced to
stop at other than interrecord gap). If the device isinan
interrupt-pending condition, the condition is cleared.

If the R field of the HIO instruction is 0 or if no 1/O ad-
dress recognition exists, no general registers are affected,
but the condition code is set. If the R field is an odd
value, the condition code is set and the following informa-
tion is loaded into register R,

Status Byte count

—te
O 7 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

86 Input/Output Instructions

The status information returned for HIO has the same in-
terpretation as that returned for the instruction SIO and
shows the 1/O status at the time cf the halt. The count
information shows the number of bytes remaining to be
transmitted at the time of the halt. If the R field of HIO
is an even value and not 0, the condition code is set, reg-
ister R+1 is loaded as shown above, and register R contains
the following information:

0000 0000 0000 0000| Current command address
T T I S e T T o s T8 BB 51 2 BB 26 1m0 3

The current command doubleword address has the same in-
terpretation as that for the instruction SIO.

Affected: (R), (Rul), CC1,CC2

Condition code settings:

1 2 3 4 Resultof HIO

0 0 - - 1/O address recognized and device con-
troller is not "busy".

0 1 - - 1/0 address recognized but device con-

trollerwas "busy"at the time of the halt,

1/O address not recognized.

TIO TEST INPUT/OUTPUT
(Word index alignment, privileged)

erence address
1/0 address

0 21 22 23124 25 26 D1 % 30 31

* 4D R X

T T 7 314 56 718 5 0z 315

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmission, The operation of the selected
IOP, device controller, and device are not affected, and
no operations are initiated or terminated by this instruction.
The responses to TIO provide the program with the informa-
tion necessary to determine the current status of the device,
device controller, and 10OP, the number of bytes remaining
to be transmitted to or from memory in the operation, and
the present point at which the 10OP is operating in the com-
mand list, If the R field of the TIO instruction is 0, or if
CC1 (as a result of the execution of this instruction) is a 1,
no general registers are affected, but the condition code is
set. If the R field of TIO is an odd value, the condition
code is set and the 1/O status and byte count are loaded
into register R as follows:

Status Byte count

0 1 2 314 5 6 7i8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The status information has the same interpretation as the
status information returned for the instruction SIO and shows
the 1/O status at the time of sampling.

The count information shows the number of bytes remaining
to be transmitted at the time of sampling. If the R field of
the TIO instruction is an even value and not 0, the

condition code is set, register R + 1 is loaded as shown
above, and register R is loaded as fol lows:

0000 0000 0000 0000

O 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 2 27128 29 30 3N

Current command address

The current command doubleword address has the same in-
terpretation as for the instruction S10,

Affected: (R), (Rul), CC1,CC2

Condition code settings:

I 2 3 4 Resultof TIO

0 0 - - 1/O address recognized and acceptable
SIO is currently possible.

0 1 - - 1/O address recognized but acceptable
SIO is not currently possible.

I 0 - - 1OPaddress recognized but device con-

troller either is attached to a "busy"
selector IOP that cannot return status at
this time or, for specific device con-
trollers, is currently "busy" with another
device. No status information is returned
to general registers.

I/O address not recognized; no status in-

formation is returned to general registers,

DV TEST DEVICE
(Word index alignment, privileged)

The count information shows the number of bytes remaining
to be transmitted in the current operation at the time of the
TDV instruction. If the value of the R field of TDV is an
even value and not 0, the condition code is set, register
R+ 1is loaded as shown above, and register R is loaded as
follows:

0000 0000 0000 000O

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Current command address

The current command doubleword address has the same in-
terpretation as for the instruction SIO,

Affected: (R), (Rul), CCl

Condition code settings:

1 2 3 4 Result of TDV
0 - - I/O address recognized,
0 1 - = 1/O address recognized and device-
dependent condition is present,
1 0 - - IOP address recognized but device con-

troller either is attached to a "busy"
selector IOP that cannot return status at
this time or, for specific device con-
trollers, is currently "busy" with another
device. No status information is returned
to general registers.

/O address not recognized; no status in-
formation is returned to general registers.

AIO ACKNOWLEDGE INPUT/QUTPUT INTERRUPT
(Word index alignment, privileged)

Reference address

1/O address

21 22 23124 25 26 27128 29 30 31

* 4E R X

T z2 317 5678 s W BT
TEST DEVICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected IOP, device controller, and
device is not affected, and no operations are initiated or
terminated. The responses to TDV provide the program with
information giving details on the condition of the selected
device, the number of bytes remaining to be transmitted to
or from memory in the current operation, and the present
point at which the 1OP is operating in the command list,

If the R field of the TDV instruction is 0, or if CC1 (as a
result of the execution of this instruction) is a 1, the con-
dition code is set, but no general registers are affected.

If the R field of TDV is an odd value, the condition code

is set and the device status and byte count are loaded into
register R as follows:

Status Byte count
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23i24 25 26 27128 29 30 31
Bit
Position Function
0-7 Unique to the device and device controller,
8-15 Same as for bits 8-15 of the status information for

instruction SIO.

Reference address

* 6E R X

0 v 2 3145 6 778 9 10 11012 13 14

AlO isused to acknowledge an input/output interrupt and to
identify what I/O unit is causing the interrupt and why. Bits
21, 22, and 23 of the effective virtual address of the AIO in-
struction (the IOP portion of the I/O selection code field)
specify the type of interrupt being acknowledged. These bits
should be coded 000 to specify the standard I/O system interrupt
acknowledgement (other codings of these bits are reserved for
use with special 1/O systems). The remainder of the 1/O se~
lection code field (bit positions 24-31) has no other use in the
standard I/O interrupt acknowledgement because the identi-
fication of the interrupt source is one of the responses of the
standard 1/O system to the AIO instruction.

Standard /O system interrupts can be initiated for the fol-
lowing conditions:

Interrupt ¢ Status
Condition prerequisite bit set
Zero byte count IZC=1 10
Channel end ICE=1 11

fZZC, ICE, IUE, HTE, and SIL refer to flag bits in the IOP
command doublewords (see Chapter 4).

Input/Output Instructions 87

Status
bit set

Interrupt
prerequisite

Condition

Transmission memory error

IVE=1, HTE=1 12

IVE=1, HTE=1 8,12
and SIL=0

IUE=1 12

Incorrect length

Memory address error (10OP
memory error or IOP con-
trol error)

IVE=1, HTE =1 9,12
IUE=1 12
IUE=1 12

Transmission data error
Unusual end
I0OP halt

When a device interrupt condition occurs, the IOP forwards
the request to the CPU interrupt system 1/O interrupt level.
If this interrupt level is armed, enabled, and not inhibited

(see Chapter 2, "Control of the Interrupt System"), the CPU
eventually acknowledges the interrupt request and executes
the XPSD instruction in core memory location X'5C', which
leads to the execution of an AIO instruction.

For the purpose of acknowledging standard 1/0 interrupts,
the 10Ps, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the 1/O system in a particular installation.

If the R field of the AIO instruction is 0 or if no device in~
terrupt request is present, the condition code is set but the
general register is not affected. If the R field of AIO is
not 0, the condition code is set and register R is loaded
with the following information:

Status 0000 0 1/O address '
07 2 314 56 718 9 10 nliz 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3
Bit
Position Function
0-7 Unique to the device and the device controller.
8 Incorrect length: if this bit is 1, an incorrect

length condition has been signaled to the IOP
by the device controller during the previous
operation,

tIZC, ICE, IUE, HTE, and SIL refer to flag bits in the IOP
command doublewords (see Chapter 4).

88 Input/Output Instructions

Bit

Position Function

8 Incorrect length is suppressed as an error by

(cont.) coding the SIL flag (a 1 in bit 38) of the command
doubleword. At the end of the execution of an
1/0 command list, this status bit is 1 if an incor-
rect length condition occurred anywhere in the
command list, regardless of the coding of the SIL flag.

9 Transmission data error: this bit is set to 1 if the
IOP or device controller has detected a parity er-
ror or data overrun in the transmitted information.

10 Zero byte count interrupt: if this bit is 1, the byte
count for the operation being performed by the in-
terrupting device has been reduced to 0, and the
interrupt ot zero byte count (IZC) flag in the com-
mand doubleword for the operation was coded with
al.

11 Channel end interrupt: if this bit is 1, the device
controller has signaled channel end to the IOP,
and the interrupt at channel end (ICE) flag in the
command doubleword for the operation was coded
witha 1,

12 IOP unusual end interrupt: if this bit is 1, the [OP
has originated the interrupt as a result of a fault or
unusual condition reported by the device.

13-20 Reserved
21-31 1/O oddress: this field identifies the highest-

priority device requesting an interrupt. Bit posi-
tions 21-23 identify the IOP. If bit 24 is 0, bits
25-31 constitute a common device controller and
device code; if bit 24 is 1, bits 25-27 constitute
a device controller code and bits 28-31 identify a
device attached to that device controller.

The AIO instruction resets the interrupt request signal from
the highest priority 1/O device requesting interrupt service
(i.e., the device identified above in bits 21-31).
Affected: (R), CCl,CC2

Condition code settings:

] 3 4 Result of AIO
0 0 - - normdl interrupt recognition.
0 1 - - unusudl interrupt recognition.

no interrupt recognition.

4. INPUT/OUTPUT OPERATIONS

In a SIGMA 6 system, input/output operations are prima-
rily under control of one or more input/output processors
(IOPs). This allows the CPU to concentrate on program
execution, free from the time-consuming details of /O opera-
tions. Any 1/O events that require CPU intervention are
brought to its attention by means of the interrupt system,

In the following discussion, the terminology conventions
used are that the CPU executes instructions, the IOP exe-
cutes commands, and the device controllers and /or 1/O
devices execute orders. To illustrate, the CPU will exe-
cute the START INPUT/OUTPUT (SIO) instruction to initi-
ate an 1/O operation. During the course of an I/O opera-
tion, the IOP might issue a command called Control, to
transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

SIGMA 6 10OPs operate independently after they have been
started by the central processor. They automatically pick
up a chain of one or more commands from core memory and
then execute these commands until the chain is completed.

The multiplexor input/output processor (MIOP), or MIOP
expansion option (which includes conflict-resolving circuitry
fo permit it to share a memory bus), can simultaneously
operate up to 24 device controllers. Each device controller
is assigned its own channel and chain of 1/O commands. The
selector input/output processor (SIOP) can handle any of up
to 32 high-speed device controllers at rates up to the full
speed of the core memory (one 32-bit word/cycle).

The flexible SIGMA 6 1/O structure permits both command
chaining (making possible multiple-record operations) and
data chaining (making possible scatter-read and gather-
write operations) without intervening CPU control. Com-
mand chaining refers to the execution of a sequence of 1/O
commands, under control of an IOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation tobe performed
for a record is the same as that performed for the previous
record. Data chaining refersto the execution of a sequence
of 1/O commands, under control of an IOP, that gather (or
scatter) information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears (or is
to appear) in noncontiguous locations in memory. For
example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
I/O command list might appear as follows:

1. Read card, store columns 1-10, data chain
2. Store columns 11-60, data chain

3. Store columns 61-80, command chain (end of data
chain)

4. Read card, store columns 1-40, data chain

5. Store columns 41-80 (end of command chain, end of
data chain)

The SIGMA 6 CPU plays a minor role in the execution

of an I/O operation. The CPU-executed program is respon-
sible for creating and storing the command list (prepared
prior to the initiation of any1/Ooperation) and for supply-
ing the IOP witha pointer to the first command in the I/O
command list. Most of the communication between the CPU
and the 1/O system is carried out through memory.

The following is an example of the sequence of events that
occurs during an 1/O operation:

1. A CPU-executed program writes a sequence of 1/0O
commands in core memory.

2. The CPU executes the instruction START INPUT /OUTPUT
and furnishes the IOP with an 11-bit /O address (des-
signating the device to be started) and a 16-bit first
command address (designating the actual core memory
doubleword location where the first command for this
device is located). At this point, either the device is
started (if in the "ready" condition with no device in-
terrupt pending) or an instruction reject occurs. The
CPU is informed by condition code settingsas towhich
of the two alternatives hasoccurred, If the START 1/0
instruction is accepted, the command counter portion

of the IOP register associated with the designated de- I

vice.controller isloaded with the first command address.
Assuming that the SIO instruction is accepted, from this
time until the full sequence of I/O commands has been
executed, the main program of the CPU need play no
role in the I/O operation. At any time, however, it
may obtain status information on the progress of the [/O
operation without interfering with the operation.

3. Thedevice is now in the "busy" condition. When the
devicedeterminesthat it has the highest priority for
access to the IOP, it requests service from the IOP
with a service call. The IOP obtains the address of
the first command doubleword of the 1/O sequence
(from the command counter asssociated with this de-
vice). The IOP then fetches the /O command
doubleword from core memory, loads the doubleword
into another register associated with the device, and
transmits the first order (extracted from the command
doubleword) to the device.

4. Each command counter contains the memory address of

the current I/O command in the sequence for its de-
vice. When the device requires further servicing, it
makes a request to the IOP, which then repeats a pro- |
cess similar to that of step 3.

5. Ifadata transmission order has been sent toa device, con-
trol of the transmission resides in the device. Aseachchar-
acteris obtained by the [/Odevice, the IOPissignaled
that data is available. The IOP uses the information
stored in its own registers to control the information
interchange between the I/O device and the memory, on
either @ word-by~word or character-by-character
basis, depending on the nature of the device.

Input/Output Operations 89

6. When all information exchanges called for by a single
1/O command doubleword have been completed, the
IOP uses the command counter to obtain the next com-
mand doubleword for execution. This process continues
until all such command doublewords associated with the
I/O sequence have been executed.

10P COMMAND DOUBLEWORDS

I All 1OP command doublewords (except Transfer in Channel
and Stop) are assumed to be in the following format:

Memory byte address

0 1 2 374 578 718 9 10 N2 13 145178 1718 19120 21 22 23124 25 26 27128 25 30 3t

Byte count

32 33 34 35136 37 38 39140 41 42 43144 45 46 47148 49 50 51152 53 54 5515 57 58 59160 61 62 63

Bit positions O through 7 of the command doubleword con-
tain the I/O order for the device controller or device. The
1/0O orders are shown below.! Bits represented by the letter
"M" specify orders or special conditions to the device and
are unique for each type of device.

v

\

Bit positions
01 2 3 4 5 6 7 Order

MMMMMMO 1 Write

MMMMMM 1 0 Read

MMMMMMI1 1 Control

MMMMDO 1 0 0 Sense

MMMMI1 1 0 0 ReadBackward

Write. The Write order causes the device controller to in-

itiate an output operation. Bytes are read in an ascending
sequence from the memory location specified by the memory
byte address field of the command doubleword. The output
operation continues until the device signals "channel end",
or until the byte count is reduced to O and no further data
chaining is specified. Channel endoccurs when the device
has received all information associated with the output op-
eration, has completed all checks, and no longer requires
the use of [OP facilities for the operation. Data chaining
is described on the following page.

Read. The Read order causes the device controller to initi-
ate an input operation. Bytes are storedin core memory in
an ascending sequence, beginning at the location specified
by the memory byte address field of the command double-
word. The input operation continuesuntil the device signals
channel end, oruntil the byte count is reduced to 0 and no
further data chaining is specified. Channel end occurs when
the device has transmitted all information associated with
the input operation and no longer requires the use of IOP
facilities for the operation.

fNot all 1/O devices recognize all these orders. See the
particular XDS SIGMA peripheral reference manual for
orders applicable to that device.

90 IOP Command Doublewords

Control. The Control order is used to initiate special oper-
ationsby the device. For magnetic tape, it isused to issue
orderssuch as rewind, backspace record, backspace file,
etc. Most orders can be specified by the M bits of the
Control order; however, if additional information is re-
quired for a particular operation (e.g., the starting ad-
dress of a disk-seek), the memory byte address field of the
command doubleword specifies the starting address of the
bytes that are to be transmitted to the device controller for
the additional information. When all bytes necessary for
the operation have been transmitted, the device controller
signals channel end.

Sense. The Sense order causes the device to transmit one or
more bytes of information, describing its current state. The
bytesare stored in core memory in an ascending sequence,
beginning with the address specified by the memory byte ad-
dress field of the command doubleword. The number of bytes
transmitted is a function of the device and the condition it
describes. The Sense order can be used to obtain the cur-
rent sector address from a disk unit.

Read Backward. The Read Backward order (for devices that
can execute it) causes the device to be started in reverse,
and bytes to be transmitted to the IOP for storage into core
memory in a descending sequence, beginning at the location
specified by the memory byte address field of the command
doubleword. 1In all other respects, Read Backward is iden-
tical to Read, including reducing the byte count with each
byte transmitted.

The Transfer in Channel command doubleword is assumed to
be in the following format:

iCommand doubleword address

8 9 10 112 13 14 15116 17718 19720727 22 23724 25 26 27128 29 30 31

Transfer in Channel. The Transfer in Channel command is exe-
cutedwithinthe IOP, and it has no direct effect on any of
the 1/O system elements external to the addressed IOP. The
primary purpose of Transfer in Channel is to permit branch-
ing within the command list so that the IOP can, for exam-
ple, repeatedly transmit the same set of information a num-
ber of times. When the IOP executes Transfer in Channel,
it loads the command counter for the device controller it is
currently servicing with the command doubleword address
field of the Transfer in Channel command, loads the new
command doubleword specified by this address into the IOP
registers associated with the device controller, and then
executes the new command. (Bit positions 0-3, and 32-63
of the command doubleword for Transfer in Channel are ig-
nored.) Transfer in Channel thus allows a command list to
be broken into noncontiguous groups of commands. When
used in conjunction with command chaining, Transfer in
Channel facilitates the control of devices such as unbuffered
card punches or unbuffered line printers. The current flags
(see "Flags" below) are not altered during this command;
thus the type of chaining called for in the previous com-
mand doubleword is retained until changed by a command
doubleword following Transfer in Channel.

For example, assume that it is desired to present the same
card image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twelve rows have been punched, it causes
the IOP to skip the command it would be executing next.
Thus, @ command list for punching two cards might look
like the following example.

Location Command

A I;unch row for card 1, command chain
Transfer in Channel to A

B Punch row for card 2, command chain
Transfer in Channel to B
Stop

.

.

The Transfer in Channel command also can be used in con-
junction with data chaining. As one example, consider a
situation often encountered in data acquisition applications,
where data is transmitted in extremely long, continuous
streams. In this case, the data can be stored alternately in
two or more buffer storage areas so that computer processing
can be carried out on the data in one buffer while additional
data is being input into the other buffer. The command list

for such an application might look like the following example.

Location Command

.

>o-o

Read data, store in buffer 1, data chain
Store in buffer 2, data chain

Transfer in Channel to A

If the IOP encounters two successive Transfer in Channel
commands, this is considered an IOP control error, result-
ing in the IOP setting the IOP control error status bit and

issuing an "IOP halt" signal to the device controller. The
IOP then halts further servicing of this command list.

The Stop command doubleword is assumed to be in the fol-
lowing format:

—

000 0000

0000 0000

57 58 59160 61 62 63

Stop. The Stop command causes certain devices to stop,
generate a channel end condition, and also request an in-
terrupt at location X'5C' if bit 0 in the Stop command is a
1. An AIO instruction executed after the interrupt is ac-
knowledged results in a 1 in bit position 7 of register R, to
indicate the reason for the interrupt. (Bit positions 32-39
of the command doubleword for Stop must be zero; bit posi-
tions 8-31 and 40-63 are ignored). The Stop command is

0 1 2 304756 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 :

primarily used to terminate a command chain for an
unbuffered device, as illustrated in the example given for
Transfer in Channel.

MEMORY BYTE ADDRESS

For all 1/O commands (except Transfer in Channel and
Stop), bit positions 13-31 of the command doubleword
provide for a 19-bit core memory byte address, desig-
nating the memory location for the next byte of data.

For the Write, Read, and Control orders, this field (as
stored in an 1OP register) is incremented by 1 as each

byte is transmitted to the 1/O operation; for the Read

Backward order, the field is decremented by 1 as each
byte is transmitted.

FLAGS

For all /O commands {except Transfer in Channel and
Stop) bit positions 32-39 of the command doubleword
provide the IOP with eight flags that specify how to
handle chaining, error, and interrupt situations. The
functions of these flags are:

Bit
Position Function

32 (DC) Data chain. If this flag is 1, data chaining is
called for when the current byte count is reduced
to 0. The next command doubleword is fetched
and loaded into the IOP register associated with
the device controller, but the new order code is
not passed out to the device controller; thus, the
operation called for by the previous order is con-
tinued. (Except for Transfer in Channel, the
new command doubleword is used only to supply
a new memory address, a new count, and new
flags.) If the data chain flag is 0, no further
data chaining is called for. Channel end is ini-
tiated either by the device running out of infor-
mation, or by the byte count being reduced to
0. At channel end, the device may accept a
new SIO instruction, providing that a device
interrupt is not pending as aresult of coding the
1ZC (bit 33), ICE (bit 35), or IUE (bit 37) flags,

and no fault condition exists.

33 (IZC) Interrupt at zero byte count. If this flag is 1,
the 1OP requests an interrupt at location X'5C!
when the byte count of this command double-
word (as stored in the IOP register) is reduced
to 0. An AIQ instruction executed after the
interrupt is acknowledged results in a 1 in bit
position 10 of register R, to indicate the reason
for the interrupt.

34(CC) Command chain. If this flag is 1, command
chaining is called for when channel end occurs.
If the previous operation did not terminate with
an "unusual end" condition, the next command
doubleword is fetched and loaded into the 10P
register associated with the device controller,

IOP Command Doublewords 7N

Bit

Position

Function

35 (ICE)

36 (HTE)

37 (IUE)

38 (SIL)

92

and the new order code is passed out to the de-
vice controller. If the CC flag is 0, no further
command chaining is called for. If both data
chaining and command chaining are called for in
the same command doubleword, data chaining
occurs if the byte count is reduced tc O before
channel end, and command chaining occurs if
the channel end occurs before the byte count is
reduced to 0.

Interrupt at channel end. If this flag is 1, the
IOP requests an interrupt at location X'5C' when
channel end occurs for the operation being con-
trolled by this command doubleword. An AIO
instruction executed after the interrupt is acknowl-
edged results in a 1 in bit position 11 of the
status information, to indicate the reason for the
interrupt. If the ICE flag is 0, no interrupt is
requested.

Halt on transmission error. If this flag is 1, any
error condition (transmission data error, trans-
mission memory error, incorrect length error)
detected in the device controller or IOP results
in halting the 1/O operation being controlled by
this command doubleword. If the HTE flagis O,
an error condition does not cause the 1/0O oper-
ation to halt, although the error conditions are
recorded in the 10OP register and returned as
part of the status information for the instructions

SIO, HIO, and TIO.

The HTE flag must be coded identically inevery
command doubleword associated with the same -
physical record. This means that when data
chaining occurs, the HTE flag in the new IOP
command doubleword must be the same as the
HTE flag in the previous IOP command double-
word. This restriction applies to data chaining
only, and not to command chaining.

Interrupt on unusual end. If this flag is 1, the
device controller requests an interrupt at loca-
tion X'5C' to be triggered when an "unusual
end" condition is encountered. When an
"unusual end" condition is signaled to the 10OP,
further servicing of the commands for that device
is suspended. An AIO instruction executed after
the interrupt is acknowledged results ina 1 in
bit position 12 of register R, (status information)
to indicate the reason for the interrupt. If the
IUE flag is 0, no interrupt is requested.

Suppress incorrect length. If this flag is 1, an
incorrect length indication is not to be classified
as an errorby the 10P, although the 1OP retains
the incorrect length indication and provides an
indicator (bit 8 of the status response for SIO,
HIO, and TIO) to the program. If the SIL flag
is 0, an incorrect length is considered an error

10P Command Doublewords

Bit

Position Function

and the IOP performs as spucified by the HTE and |
IUE flags. Incorrect length iscaused by a channel
end condition occurring before the device control -
ler has received a count-done signal from the IOP,
or is caused by the device controller receiving a
count-done signal before end of record; e. g.,
count-done before 80 columns have been read
from a card. Normally, a count-done signal is
sent to the device controller by the IOP to indi-
cate that all data transfer associated with the cur-
rent operation has been completed. The IOP is
capable of suppressing an error condition on in-
correct length, since there are many situations in
which incorrect length is a legitimate condition
and not a true error.

The SIL flag must be coded identically in every
command doubleword associated with the same
physical record. This means that when data
chaining occurs, the SIL flag in the new IOP
command doubleword must be the same as the SIL
flag in the previous IOP command doubleword.
This restriction applies to data chaining only,
and not to command chaining.

39 (S) Skip. If this flag is 1, the input operation
(Read or Read Backward) controlled by this com-
mand doubleword continues normally, except
that no information is stored in memory. When
used in conjunction with data chaining, the skip
operation provides the c¢apability for selective

reading of portions of a record.

If the S flag is 1 for an output (Write) operation,
the IOP does not access memory, but transmits |
zeros as data instead (i.e., the IOP transmits
the number of X'00' bytes specified in the byte
count of the command doubleword). This allows

a program to punch a blank card (by using the S
bit and a Punch Binary order with a byte count

of 120) without requiring memory access for data.
If the S flag is 0, the 1/O operation proceeds
normally.

BYTE COUNT

For all commands (except Transfer in Channel and Stop)
bit positions 48-63 of the command doubleword provide
for a 16-bit count of the number of bytes to be trans-
mitted in the 1/O operation; thus, 1 to 65,536 bytes
(16,384 words) can be specified for transfer before com-
mand chaining or data chaining is required. This field
(as stored in an 1OP register) is decremented for each
byte transmitted in the 1/O operation; thus, it always
contains a count of the number of bytes to be transmitted
to and from memory, and this count is returned as part of
the response information for the instructions, SIO, HIO,
TIO, and TDV. An initial byte count of O is interpreted
as 65,536 bytes.

9. OPERATOR CONTROLS

The standard SIGMA 6 system has a processor control panel
(PCP) mounted on one of the central processor cabinets.
This panel serves as an operator's control center.

PROCESSOR CONTROL PANEL

The processor control panel (see Figure 7) has two distinct
functional sections. The upper section (labeled MAINTE-
NANCE SECTION) is reserved for maintenance controls and
indicators, and the lower section contains the controls and
indicators for the computer operator.

POWER

The POWER switch controls all AC power to the central
processor and to all units under its direct control. The
POWER switch is unlighted when the AC power is off, and
is lighted when AC power is on. The POWER switch is
always operative.

CPU RESET/CLEAR

The CPU RESET/CLEAR switch is used to initialize the cen-
tral processor. When this switch is pressed, the following
operations are performed:

1. All interrupt levels are reset to the disarmed and dis-
abled state.

2. The ALARM, WRITE KEY, INTRPT INHIBIT, POINTER,
CONDITION CODE, FLOAT MODE, MODE, and
TRAP indicators are all reset to 0's (turned off).

3. The INSTRUCTION ADDRESS indicators are set to
X'25',

4. The DISPLAY indicators are set to X'02000000', which
is a LOAD CONDITIONS AND FLOATING CON-
TROLS IMMEDIATE (LCFI) with an R field of O to pro-
duce a "no operation" instruction.

CON'RE: MBS MEMGRY rAGiT — AR
wrwis s LN S . L - .o
Eald e
» ey ® Daanos .
O » e, @ * nouwai @ .o
WATEHEOG NTERUERY AR ¥ ERRCR
HIMER seagcr HoDE

MAIKTENANGE SECTION

. “
! ’ : M - . -
.' C
o onr e

EHARES PLETIV L

SENSE e

WL R

o CONDHTHON LD rm FLAT MODE e e MODT o e TRAP o
oo« SA WP GUC AmTe

ADGR $T0P

. SR et o s 0 R e
S ten o0

EIE R VT —

e S S

wAT {_mtnnwr

N e ®
- 5 ¥ N i . ik e i -

Figure 8. Processor Control Panel

Operator Controls 93

The CPU RESET/CLEAR switch does not affect any operations
that may be in process in the standard input/output system.

The CPU RESET/CLEAR switch is also used in conjucntion
with the SYS RESET/CLEAR switch to clear core memory
(i.e., reset memory to all 0's). The two switches are inter-
locked so that both must be pressed simultaneously for the
memory clear operation to occur. The memory clear oper-
ation does not affect any general register — core memory
locations O through 15 are cleared instead. Also the clear
operation does not affect the memory control storage (write
locks). Note that pressing the SYS RESET/CLEAR switch
affects the [/O system and the MEMORY FAULT indicators.

I/0 RESET

The 1/O RESET switch is used to initialize the input/
output system. When the switch is pressed, all periph-
eral devices under control of the central processor are
reset to the "ready" condition, and all status, interrupt, and
control indicators in the input/output system are reset. The
/O RESET switch does not affect any operations that may
be processed in the central processor.

LOAD

The LOAD switch initializes memory for an input operation
that uses the peripheral unit selected by the UNIT ADDRESS
switches. The detailed operation of the loading process is
described in the section "Loading Operation".

UNIT ADDRESS

The three UNIT ADDRESS switches are used to select the
peripheral unit to be used in the loading process. The left
switch has eight positions, numbered 0 through 7, desig-
nating an input/output processor. The center and right
switches each have 16 positions, numbered 0 through F
(hexadecimal) that designate a device controller/device
under the control of the IOP,

SYSTEM RESET/CLEAR

The SYS RESET/CLEAR switch is used to reset all controls
and indicatorsin the SIGMA 6 system. Pressing this switch
causes the computer to perform all operations described for
the CPU RESET/CLEAR switch, perform all operations de-
scribed for the /O RESET switch, initialize the memory
control logic, and reset the MEMORY FAULT indicator.

The SYS RESET/CLEAR switch is also used in conjunction
with the CPU RESET/CLEAR switch to reset core memory
to Q's,

NORMAL MODE
The NORMAL MODE indicator is lighted when all the fol-
lowing conditions are satisfied:
1. The WATCHDOG TIMER switch is in the NORMAL
position

2. The INTERLEAVE SELECI switch is in the NORMAL

position

94 Processor Control Panel

3. The PARITY ERROR MODE switch is in the CONT

{continue) position

4. The CLOCK MODE switch is in the CONT (continuous
position

5. All logic power margins are "normal "

If any of the above conditions is not satisfied, the NORMAL
MODE indicator is unlighted.

The RUN indicator is lighted when the COMPUTE switch is
in the RUN position and no halt condition exists.

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exist:

1. The computer is executing a WAIT instruction.

2. The program is stopped because of the ADDRESS STOP
switch.

3. The computer is halted because of the PARITY ERROR
MODE switch.

INTERRUPT

The INTERRUPT switch is used by the operator to activate
the control panel interrupt. If the control panel interrypt
(level X*'5D") is armed when the INTERRUPT switch is
pressed, a single pulse is transmitted to the interrupt level,
advancing it to the waiting state. The INTERRUPT switch is
lighted when the control panel interrupt level is in the
waiting state, and remains lighted until the interrupt level
advances to the active state (at which time the INTERRUPT
switch is turned off). If the control panel interrupt level

is disarmed (or already in the active state) when the INTER-
RUPT switch is pressed, no computer or control panel action
occurs. If the control panel interrupt level advances to the
waiting state and the level is disabled, the INTERRUPT
switch remains lighted until the level is either enabled and
allowed to advance to the active state or is returned to the
armed or disarmed state. The INTERRUPT switch is always
operative on the processor control panel.

PROGRAM STATUS DOUBLEWORD

Two rows of binary indicators are used to display the cur-
rent program status doubleword (PSD). For the convenience
of use and display, the second portion of the PSD, labeled
PSW2, is arranged above the first portion, labeled PSW1.
The PSD display consists of the indicators shown in Table 9.

INSERT

The INSERT switch is used to make changes in the program
status doubleword. The switch is inactive in the center
position and is momentary in the upper (PSW2) and lower
(PSW1) positions. When the INSERT switch is moved to the

Table 9. Program Status Doubleword Display

Indi . PSD Bit PSD
ndicator Function Posiiton Designation
PSW2 WRITE KEY Write key 34-35 WK
INTRPT INHIBIT Interrupt inhibits 37-39 CI, I, El
CTR Counter interrupt group inhibit 37 Cl
I/O Input/output interrupt group inhibit 38 I
EXT External interrupts inhibit 39 El
POINTER Register block pointer 55-59 RP
PSWi CONDITION CODE Condition code 0-3 CcC
FLOAT MODE Floating-point mode controls 5-7 FS,FZ,FN
SIG Significance trap mask 5 FS
ZERO Zero trap mask 6 FzZ
NRMZ Normalize mask 7 FN
MODE Machine state/memory map controls 8-9 MS, MM
SLAVE Master/slave mode control 8 MS
MAP Memory map control 9 MM
TRAP Arithmetic trap masks 10, 11 DM, AM
DEC Decimal arithmetic fault trap mask 10 DM
ARITH Fixed-point arithmetic overflow trap mask 11 AM
INSTRUCTION A.DDRESS Address of next instruction to be executed 15-31 IA

PSW1 or PSW2 position, the corresponding indicatorsinthe
program status doubleword are altered (or unchanged, ac-
cording to current state of the 32 DATA switches below the
DISPLAY indicators).

INSTR ADDR

The INSTR ADDR (instruction address) switch is inactive in
the center position; the upper position (HOLD} is latching
and the lower position (INCREMENT) is momentary. When
the switch is placed in the HOLD position, the normal pro-
cess of incrementing the instruction address portion of the
program status doubleword with each instruction execution
in inhibited. If the COMPUTE switch is ploced in the RUN
position while the INSTR ADDR switch is at HOLD, the in-
struction in the location pointed to by the value of the IN-
STRUCTION ADDRESS indicators is executed, repeatedly,
with the INSTRUCTION ADDRESS indicators remaining un-
changed. If the COMPUTE switch is moved to the STEP
position while the INSTR ADDR switch is ot HOLD, the in-
struction is executed once each time the COMPUTE switch
is moved to STEP; the INSTRUCTION ADDRESS indicators
remain unchanged unless the instruction is LPSD, XPSD, or
a branch instruction with the branch condition satisfied.

The following operations are performed each time the
INSTR ADDR switch is moved from the center position to
the INCREMENT position:

1. The current value of the INSTRUCTION ADDRESS

indicators is incremented by 1.

2. Using the new value of the INSTRUCTION ADDRESS
indicators, the contents of the location pointed to by
the INSTRUCTION ADDRESS is displayed.in the DIS-
PLAY indicators.

ADDR STOP

The ADDR STOP (address stop) switch is used (with the
COMPUTE switch inthe RUN position) to cause the central
processor to establish a halt condition and turn on the WAIT
indicator whenever the CPU accesses the memory location
whose address is equal to the SELECT ADDRESS value.

When the halt condition occurs, the instruction in the lo-
cation pointed to by the INSTRUCTION ADDRESS indicators
appears in the DISPLAY indicators. The displayed instruc-.
tion is the one that would have been executed next, had
the halt condition not occurred. If the halt condition is
caused by an instruction access, the value of the IN-
STRUCTION ADDRESS indicators (at the time of the halt)

is equal to the SELECT ADDRESS value. If the halt condi-
tion is caused by execution of an instruction with an in-
direct reference address equal to the SELECT ADDRESS
value (i.e., by a direct address fetch), is caused by an in-
struction operand fetch, or is caused by an unsatisfied
conditional branch instruction whose effective address is
equal to the SELECT ADDRESS value, the value of the
INSTRUCTION ADDRESS indicators {af the time of the

halt) is 1 greater than the address of the instruction that
referenced the SELECT ADDRESS value,

Processor Contro! Panel 95

If an interrupt or trap condition is detected after the AD-
DRESS STOP halt condition is detected and before the CPU
reaches the normal ADDRESS STOP halt phase, the CPU
executes the instruction in the appropriate interrupt or trap
location and then enters the ADDRESS STOP halt phase. In
this case; the value of the INSTRUCTION ADDRESS indica-
tors {at the time of the halt) is equal to the address of the
next instructionin logical sequence after the instruction in
the interrupt or trap location.

The ADDRESS STOP halt condition is reset when the COM-
PUTE switch is moved from RUN to IDLE; if the COMPUTE
switch is then moved back to RUN (or to STEP), the instruc-
tion shown in the DISPLAY indicators is the next instruction
executed.

SELECT ADDRESS

The SELECT ADDRESS switches select the address at which
a program is to be halted (when used in conjunction with
the ADDR STOP switch), select the address of a location

to be altered (when used in conjunction with the STORE
switch), and select the address of a word to be displayed
(when used in conjunction with the DISPLAY switch). Each
SELECT ADDRESS switch represents a 1 when it is in the
upper position, and represents a 0 in the lower position.

STORE

The STORE switch is used to alter the contents of a general
register or a memory location. The switch is inactive in the
center position and is momentary in the INSTR ADDR and
SELECT ADDR positions. When the switch is moved to the
INSTR ADDR position, the current value of the DISPLAY in-
dicators is stored in the location pointed toby the INSTRUC -
TION ADDRESS indicators; when the switch s moved tothe
SELECT ADDR position, the current value of the DISPLAY
indicators is stored in the location pointed to by the SE-
LECT ADDRESS switches.

DISPLAY

The DISPLAY switch is used to display the contents of a
general register or memory location. The switch is inactive
inthe center position and is momentary in the INSTR ADDR
and SELECT ADDR positions. When the switch is moved to
the INSTR ADDR or SELECT ADDR position, the word in the
focation pointed to by the indicators or switches, respec-
tively, is loaded into the instruction register and displayed
with the DISPLAY indicators.

The 32 DISPLAY indicators are used to display a computer
word, when used together with the INSTR ADDR, STORE,
DISPLAY, and DATA switches. The DISPLAY indicators
represent the current contents of the internal CPU instruc-
tion register.

DATA

The 32 DATA switches beneath the DISPLAY indicators are
used to alter the contents of the program status doubleword
(when used in conjunction with the INSERT switch) and to
alter the value of the DISPLAY indicators (when used in

conjunction with the single DATA switch). Each of the
32 DATA switches is inactive in the center position and

96 Processor Control Panel

islatching inboth the upper (1) and lower (0) positions. In
the center position, a DATA switch represents nochange, in
the upper or lower positionit representsa 1 or 0, respectively.

The single DATA switch is used to change the state of the
DISPLAY indicators. The switch is inactive in the center
position and is momentary in the CLEAR and ENTER posi-
tions. When the switchismoved to the CLEAR position, all
the DISPLAY indicators are reset (turned off). When the
switch is moved to the ENTER position, the display indica~
tors are not offected in those positions corresponding to
DATA switches that are in the center position, but if a
DATA switch is in the 1 or O position, that value is in-
serted infto the corresponding indicator.

COMPUTE

The COMPUTE switch is used to control the execution of
instructions, The center position (IDLE) ond the upper po-
sition (RUN) are both latching, and the lower position
(STEP) is momentary. When the COMPUTE switch is inthe
IDLE position, all other control panel switches are operative
and the ADDRESS STOP halt ond the WAIT instruction halt
conditions are reset (cleared). If the computer is in a halt
condition as a result of a memory parity error, moving the
COMPUTE switch to IDLE does not clear the memory parity
halt condition. This condition canbe cleared only by press-
ing the SYS RESET/CLEAR switch.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is lighted and the computer begins to
execute instructions (at machine speed) os follows

1. The current setting of the DISPLAY indicators is taken
as the next instruction to be executed, regardless of

the contents of the location pointed to by the current
value of the INSTRUCTION ADDRESS indicators.

2. The value of the INSTRUCTION ADDRESS indicators
is incremented by 1 unless the instruction in the DIS-
PLAY indicators was LPSD, XPSD, or a branch instruc-
tion and the branch should occur (in which case the
INSTRUCTION ADDRESS indicators are set to the value
established by the LPSD, XPSD, or branch instruction),

3. Instruction execution continues with the instruction in
the location pointed to by the new value of the IN-
STRUCTION ADDRESS indicators.

When the COMPUTE switch is in the RUN position, the
only switches that are operative are the POWER switch, the
INTERRUPT switch, the ADDR STOP switch, the INSTR
ADDR switch (in the HOLD position), and the switches in
the maintenance section.

Each time the COMPUTE switch is moved from the IDLE to
the STEP position, the following operations occur:

1. The current setting of the DISPLAY indicators is taken
as an instruction, and thesingle instruction isexecuted.

2. The current value of the INSTRUCTION ADDRESS in-
dicatorsisincrementedby 1 unless the "stepped" instruc-
tion was LPSD, XPSD, or branch instruction and the
branch should occur (in which case the INSTRUCTION
ADDRESS indicators are set to the value established by
the LPSD, XPSD, or branch instruction).

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicator is
displayed in the DISPLAY indicators.

If an instruction is being stepped (executed by moving the
COMPUTE switch from IDLE to STEP), all interrupt levels
are temporarily inhibited while the instruction is being
executed; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD in-
struction inthe appropriate trap location is executed as if
the COMPUTE switch were in the RUN position. Thus, if
a trap condition occurs during a stepped instruction, the
program status doubleword display automatically reflects
the effects of the XPSD instruction and the DISPLAY indi-
cators then contain the first instruction of the trap routine.

CONTROL MODE

The CONTROL MODE switch is a three-position, key-
operated locking switch. When the switch is in the REMOTE
position, the CPU is not operational. When the CONTROL
MODE switch is in the LOCAL position, all controls on the
PCP are operative. When the CONTROL MODE switch is
in the LOCK position, all controls on the PCP (except for
POWER, INTERRUPT, SENSE, and AUDIO) are inoperative.
However, all indicators on tka PCP continue to indicate the
various computer states. The AUDIQ switch is not affected
by the position of the CONTROL MODE switch. In addition,
the following switches on the PCP are operative when the
CONTROL MODE switch is in the LOCK position:

1. The POWERswitch remains operative to allow for situa-
tions in which power must be removed from the system.

2. The INTERRUPT switch remains operative to allow the
operator to interrupt the program being executed.

3. The SENSE switches remain operative to allow the op-
erator to provide informction to the program being
executed.

Certain switches on the PCP are locked to specific states
when the CONTROL MODE switch is in the LOCK position.
The affected switches and their locked states are:

Switch Locked State
COMPUTE RUN
WATCHDOG TIMER NORMAL
INTERLEAVE SELECT NORMAL

PARITY ERROR MODE CONT
CLOCK MODE CONT

The COMPUTE switch on the PCP must be in the RUN posi=
tion whenever the CONTROL MODE switch is moved either
from the LOCAL to the LOCK position or from the LOCK

to the LOCAL position; otherwise, an undefined operation
may occur.

MEMORY FAULT

The MEMORY FAULT indicators each correspond to a
specific memory bank. - Whenever a memory parity error
occurs in a memory bank, the appropriate indicator is
lighted and remains lighted until the indicators are reset.

When a memory parity error occurs, an interrupt pulse is
also transmitted to the memory parity interrupt level.

The MEMORY FAULT indicators are reset whenever the
SYS RESET/CLEAR switch is pressed or whenever the com-
puter executes a READ DIRECT instruction coded to read the
MEMORY FAULT indicators. If the reason for a MEMORY
FAULT indicator being on is overtemperature, and the con-
dition still exists when the indicators are reset, the indica-
tor is immediately turned on again.

ALARM

The ALARM indicator is used to attract the computer opera-
tor's attention, and is turned on and off (under program con-
trol) by executing a properly coded WRITE DIRECT instruc-
tion. When the ALARM indicator is lighted and the AUDIQO
switch is ON, a 1000-Hz signal is sent to the computer
speaker; when the AUDIO switch is not in the ON position,
the speaker is disconnected. (The AUDIO switch does not
affect the state of the ALARM indicator.) The ALARM in-
dicator is reset (turned off) whenever either the CPU RESET/
CLEAR or the SYS RESET/CLEAR switch is pressed.

AUDIO

The AUDIO switch controls all signals to the computer
speaker, whether from the ALARM indicator or from the
program-controlled frequency flip-flop.

WATCHDOG TIMER

The WATCHDOG TIMER switch is used to override the in-
struction watchdog timer. When this switch is at NORMAL,
the watchdog timer is operative; when the switch is in the
OVERRIDE position, the watchdog timer is inactive.

INTERLEAVE SELECT

The INTERLEAVE SELECT switch is used to override the nor-
mal operation of interleaved memory banks. When this
switch is in the NORMAL position, memory address inter-
leaving occurs normally; however, when the switch is in
the DIAGNOSTIC position, memory addresses are not inter-
leaved between core memory banks.

PARITY ERROR MODE

The PARITY ERROR MODE switch controls the action of the
computer when a memory parity error occurs. If the PARITY
ERROR MODE switch is in the CONT (continue) position
when a parity error occurs, the appropriate MEMORY
FAULT indicator is turned on and an interrupt pulse is trans-
mitted to the memory parity interrupt level. If the switch
is in the HALT position when a parity error occurs, the ap-
propriate MEMORY FAULT indicator is turned on and the
computer enters a "halt" state; the memory bank in which
the parity error occurred is unavailable to any access until
the MEMORY FAULT indicatorsare reset. If the COMPUTE
switch isin the RUN position during a halt, the WAIT

Processor Control Panel 97

indicator is lighted; however, the COMPUTE switch cannot
be used alone to proceed from o halt caused by a parity
error. In order to proceed, the SYS RESET/CLEAR switch
must first be pressed.

PHASES

The PHASES indicators, used for maintenance functions,
display certain internal operating phases of the computer,
The PREPARATION indicators display computer phases dur~
ing the preparation portion of an instruction cycle. The
PCP (processor control panel) indicators display computer
phases during processor control panel operations, The EXE-
CUTION indicators display computer phases during the
execution portion of an instruction cycle. The INT/TRAP
(interrupt/trap) indicators are individually lighted when an
interrupt or trap condition occurs. When the COMPUTE
switch is in the IDLE position, all of the PHASES indicators
are normally off except for the center PCPindicator (phase 2
is the "idle" phase for processor control panel functions).

REGISTER SELECT

The REGISTER SELECT switch is used to display the contents
of selected internal registers. When the REGISTER DISPLAY
switch is in the inactive position, the DISPLAY indicators
display the current contents of the internal instruction reg-
ister. When the COMPUTE switch is in the IDLE position,
the register selected by the REGISTER SELECT switch may
be shown in the DISPLAY indicators by moving the REGIS-
TER DISPLAY switch to the ON position.

The four SENSE switches are used, under program control,
to set the condition code portion of the program status
doubleword. When a READ DIRECT or WRITE DIRECT in-
struction is executed in the internal control mode, the con-
dition code is set according to the state of the four SENSE
switches. If a SENSE switch is in the set (1) position, the
corresponding bit of the condition code is set to 1; if a
SENSE switch is in the reset (0) position, the corresponding
bit of the condition code is reset to 0. The SENSE switches
on the PCP are operative only if the CONTROL MODE switch
is in either the LOCAL position or the LOCK position.

CLOCK MODE

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT (continuous) po-
sition, the clock operates at normal speed. However, when
the CLOCK MODE is in the inactive (center) position, the
clock enters an idle state and can be made to generate one
clock pulse each time the switch is moved to the SINGLE
STEP position. When the clock is pulsed by the CLOCK
MODE switch, the PHASE indizators reflect the computer
phase during each puise of the clock.

98 Loading Operation

LOADING OPERATION

This section describes the procedure for initially loading
programs into core memory from certain peripheral units
attached to an input/output processor in the SIGMA 6 sys=~
tem. The computer operator may initiate a loading opera-
tion from the processor control panel with the CONTROL
MODE switch in the LOCAL position.

The LOAD switch and the UNIT ADDRESS switches are used
to prepare a SIGMA 6 computer for a load operation. When
the LOAD switch is pressed, the following bootstrap pro-
gram is stored in core memory locations X'20' through X'29";

Symbolic form
of Instruction

Contents
(Hexadecimal)

Location

(Hex.) (Dec.)

20 32 00000000
21 33 00000000
22 34 020000A8
23 35 0E000058
24 36 00000011
25 37 00000xxx!
26 38 32000024 LW,0 36
27 39 CC000025 SIO,0 *37
28 40 CD000025 TIO0 *37
29 41 69C00028 BCS,12 40

When the LOAD switch is pressed, the selected peripheral
device is not activated, and no other indicators or controls
are affected; only core memory is altered.

LOAD PROCEDURE

To assure correct operation of the loading process, the fol-
lowing sequence should always be used when initiating a
load operation:

1. Place the COMPUTE switch in the IDLE position.
2. Press the SYS RESET/CLEAR switch.

3. Set the UNIT ADDRESS switches to the address of
the desired peripheral unit.

4. Press the LOAD switch.
5. Place the COMPUTE switch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations X'2A" through X'3F'. The
previous contents of general register O are destroyed
as a result of executing the bootstrap program in lo-
cations X'26' through X'29'.

"The x's in location X'25' represent the value of the UNIT
ADDRESS switches at the time the LOAD switch is pressed.

2. After the record has been read, the next instruction is
taken from location X'2A! {provided that no error con-
dition has been detected by the device or input/output
processor).

3. When the instruction in location X'2A" is executed,
the unit device and device controller selected for
loading are capable of accepting anew SIO instruction.

4. Further 1/O operations from the load unit may be ac-
complished by coding subsequent 1/O instructions to
indirectly address location X'25',

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X'26') loads general register 0 with the doubleword
address of the first /O command doubleword. The 1/O ad-
dress for the SIO instruction in location X'27' is the 11
low-order bits of location X'25' (which have been set equal
to the load unit address as a result of pressing the LOAD
switch). During the SIO instruction, general register 0
points to locations X'22' and X'23' as the first I/O com-
mand doubleword for the selected device. This command
doubleword contains an order that instructs the selected pe-
ripheral device to read 88 (X'53') bytes into consecutive
memory locations starting at word location X'2A" (byte lo-
cation X'A8'). At the completion of the read operation,
neither data chaining nor command chaining is called
for in the 1/O command doubleword. Also, the suppress

incorrect length flag is set to 1 so that an incorrect length
indication will not be considered an error. (This means
that no transmission error halt will result if the first record
is either less than or greater than 88 bytes. If the record is
greater than 88 bytes, only the first 88 bytes will be stored
in memory.) After the SIO instruction, the computer exe-
cutes a TIO instruction with the same effective address as
the SIO instruction. The TIO instruction is coded to accept
only condition code data. The BCS instruction in location
X'29' will cause a branch back to the TIO instruction as
long as either CC1 or CC2 (or both) is set to 1. In normal
operation, CC1 is reset to 0 and CC2 remains set to 1 until
the device can accept another SIO instruction, at which
time the next instruction will be taken from location X'2A'.

If a transmission error or equipment malfunction is detected
by either the device or the IOP, the IOP instructs the de-
vice to halt and initiate an "unusual end" interrupt signal
(s specified by the appropriate flags in the 1/O command
doubleword). The “unusual end" interrupt will be ignored,
however, since all interrupt levels have been disarmed by
pressing the SYS RESET/CLEAR switch prior to loading. The
device will not accept another SIO while the device inter-
rupt is pending and, therefore, the BCS instruction in loca-
tion X'29' will continue to branch to location X'28'. The
correct operator action at this point is to repeat the load
procedure. If there is no I/O address recognition of the
load unit, the SIO instruction will not cause any 1/0 action
and CC1 will continue to be set to 1 by the SIO and TIO
instructions;, thus causing the BCS instruction to branch.

Loading Operation 99

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title

XDS Standard Symbols and Codes

XDS$ Standard 8-Bit Computer Codes (EBCDIC)

XDS Standard 7-8it Communication Codes (ANSCII)
XDS Standard Symbol-Code Correspondences
Hexadecimal Arithmetic

Addition Table
Multiplication Table

Table of Powers of Sixteen]g
Table of Powers of Tenyg

Hexadecimal-Decimal Integer Conversion Table
Hexadecimal-Decimal Fraction Conversion Table
Table of Powers of Two

Mathematical Constants

XDS STANDARD SYMBOLS AND CODES

The symbol and code standards described in this publication
are applicable to all XDS products, both hardware and soft-
ware, They may be expanded or altered from time to time
to meet changing requirements,

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space; and DEL, the delete code,
which is not considered a control command.

Three types of code are shown: (1) the 8-bit XDS Standard
Computer Code, i.e., the XDS Extended Binary-Coded-
Decimal Interchange Code (EBCDIC); (2)the 7-bit American
National Standard Code for Information Interchange (ANSCII);
and (3) the XDS standard card code.

100 Appendix A

XDS STANDARD CHARACTER SETS
1. EBCDIC

S7-character set: uppercase letters, numerals, space,
and & - / . < > () + | § =

% # @ ! =

—

’ 4

63-character set: same as above plus £ | ?

n
b |

89-character set: same as 63-character set plus
lowercase letters

2. ANSCH

64-character set: uppercase letters, numerals, space,
and I " § % & ' () * + , -
/N s = <> @[]

~ #

95-character set: same as above plus lowercase letters

and { } 1 ~

CONTROL CODES

In addition to the standard character sets listed above, the
XDS symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled XDS
Standard Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all XDS standard codes will
be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code,

2. No two graphic EBCDIC codes have their seven low=
order bits equal,

XDS STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most Significant Digits NOTES:
Hexadecimal [¢} 1 2 3 4 5 é 7 8 9 A B C D E F | The characters ~ \{ } [are ANSCII
. 1Hon i n characters that do not appear in any of the
Binary 000010001 { 0010;0011 (0100{0101 {01101 0111 |1000{ 1001 {1010 {1011} 1100|1101 1011 XDS EBCDIC-based character sefs, though
o | 0000 NUL| DLE | ds sp | & _ //% 0 they are shown in the EBCDIC table.
v 7 . 1 2 The characters ¢ | — appear in the XDS
1 | 0001 SOH|DCI | ss V//A%V/ 7/% a i \ Al ! 63- and 89-character EBCDIC sets but not
/ 1 in either of the XDS ANSCli-based sets.
2 0010 STX |bC2 s ,/ 1//%//%//// b k s { B K 5 2 However, XDS software translates the char-
7 N .
3 | oon e1x |oca| si //A///%/A el e el 1] ::":l;l:m[— into ANSCII characters
0 : ‘
4 | 0 EOT | DC4 % %/////// d mju o mjul4 EBCDIC = ANSClI
LF ;/I, 7777 RX7777¥7777} I e ——
" 5 0101 HT NL ;Wi" not be assigned] e n v] E N \ 5 ¢ ' (6-0)
5 v A
26 | ono ACK|SYN /A/A//// flo|w Flo|wle | ' (7-12)
- LTI, ~(7-
g 7 | om BEL |ETB @//A//// e | p | x clpl x|z - (7-14)
- V.,
El s | 1000 EOMcAN 7/7//7//7// hlaqly Hlalv|s 3 The EBCDIC control codes in columns 0
Z 8S L7709 77207/77 ond 1 and their binary representation are
& ry rep
7 v/ Y/ 7
HERERN ENQ| EM % /00 i ' z 1 R zZ| 9 exactly the same as those in the ANSCII
K] £ 4 " A 7 7 7 7 table, except for two interchanges: LF/NL
A 1010 NAK| SUB '3 ! - /// with NAK, and HT with ENQ.
///// / V/A . .
8 | 10n vT | ESC $, Fl /%/ 7 / 4 Characters enclosed in heavy lines ore
/777777 777 included only in the XDS standard 63-
c | oo FF | FS < * % | @ ; Will not be assigned / ond 89-character EBCDIC sets.
VIV VIIIIIIIITIIIY.
g Y,
D 1101 CR | GS () ' 7//7//7/%/ 5 These characters are included only in the
— DINI 7, XDS standard 89-character EBCDIC set
o '
RS + ; > =
E | 1110 O ///A / / %,
2 2 /
> | » DEL
F|nm St | us |4 =f // % Y
| W— J N v 7\ v I
3 4 H
Most Significant Digits NOTES
Decimal AL LT 1N
Krows) (col's.) — 0 ! 2 3 4 5 6 7
| | Binary 1 x000[x001 %010 [x011 |x100 |x101 | xt 10 x111 1 Most significant bit, added for 8-bit format, is either O or even parity.
o | oooo NUL| DLE | sp 0 @ p \ P 2 Columns 0-1 are control codes.
5 3 Columns 2-5 correspond to the XDS 64-character ANSCII set.
1
! o0 somjpet) ! ! AlQ] e 9 Columns 2-7 correspond to the XDS 95-character ANSCII set,
2 | 0010 STX | DC2| * 2 B R b v
4 On many current teletypes, the symbol
3 | ool ETX | DC3| # 3 C S c]
-~ is t (5-14)
4 | o0 EOTiDC4l $ | 4 | D | T | 4 |+ s = (5419
5 | ool ENGI NAK| % 5 E U e " ~ is ESC or ALTMODE control (7-14)
5 s .
21 ¢ 1 om0 ACK| SYN 6 F v f and none of the symbols appearing in columns 6~7 are provided. Except for the three
e & v symbol differences noted above, therefore, such teletypes provide all the characters in
§ 71 omn BEL |€TB | * 716l w|g w the XDS 64-character ANSCII set. (The XDS 7015 Remote Keyboard Printer provides the
< 64-character ANSCII set also, but prints ~as A .)
& 8 | 1000 BS |CAN 8 | H| X |h
Lrg: ¢ * 5 On the XDS 7670 Remote Batch Temminal, the symbol
gl 9 | 1om HTJem [)y [9|1 | v | iy
] 3 | is | (2-1)
10 | 1010 N |SUB | ¢ Jpz|ij| = (s ¢ (51
n|oon vifesc|+ [5| k| (° k]) N CRE)
12 | 100 FElrs |, [<|uL{N]1]! S
13 1ot R s B 5 } and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
< G " _ M m differences noted above, therefore, this terminal provides all the characters in the XDS 64-
14 Mo sO | RS N N 45 n 4 character ANSCII set.
15[1 sLjus| /| ?| Of _ o |or
[So——— v

Appendix A 101

102

XDS STANDARD SYMBOL-CODE CORRESPONDENCES

escoict "
Hex.] Dec. Symbol Card Code ANSCII Meaning Remarks
00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 1 SOH 12-9-1 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSor EOM 12-9-8 0-8 backspace or end of message EOM is used only on XDS Keyboord/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
0A |10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
08 11 vT 12-9-8-3 0-1i vertical tab
oc (12 FF 12-9-8-4 0-12 form feed
oD |13 CR 12-9-8-5 0-13 carriage return
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 Si 12-9-8-7 0-15 shift in
10 16 DLE 12-11-9-8-1 1-0 data link escape
11 17 DCl1 11-9-1 1-1 device control 1
12 18 DC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 (20 DC4 11-9-4 1-4 device control 4
15 |21 LF or NL 11-9-5 0-10 line feed or new line
16 122 “SYN 11-9-6 1-6 sync
17 |23 ETB 11-9-7 1-7 end of transmission block
18 |24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medium
1A |26 sus 11-9-8-2 1-10 substitute Replaces characters with parity error.
1B |27 £SC 11-9-8-3 1-11 escape
1C |28 FS 11-9-8-4 1-12 file separator
1D |29 GS 11-9-8-5 1-13 group separator
1E 130 RS 11-9-8-6 1-14 record separator
IF (31 us 11-9-8-7 1-15 unit separator
20 |32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 |33 ss 0-9-1 significance start Sigma EDIT BYTE STRING (EBS)
22 |34 fs 0-9-2 field separation instruction — not input/output con-
23 |35 si 0-9-3 immediate significance start trol codes.
24 |36 0-9-4 24 through 2€ are unassigned.
25 37 0-9-5
26 |38 0-9-6
27 |39 0-9-7
28 |40 0-9-8
29 41 0-9-8-1
2A |42 0-9-8-2
28 |43 0-9-8-3
2C |44 0-9-8-4
2D |45 0-9-8-5
28 |46 0-9-8-6
2F |47 0-9-8-7
30 148 12-11-0-9-8-1 30 through 3F are unassigned.
31 149 9-1
32 |50 9-2
33 |51 9-3
34 |52 9-4
35 (53 9-5
36 |54 9-6
37 |55 9-7
38 |56 9-8
39 |57 9-8-1
3A (58 9-8-2
3B |59 9-8-3
3C |60 9-8-4
3D {61 9-8-5
3E |62 9-8-6
3F |63 9-8-7

'Hexadecimol and decimal notation.

t .
Decimal notation (column-row).

Appendix A

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC Symbol | Card Code ANSCI™ | Meaning Remarks

Hex. | Dec.

40 64 SP blank 2-0 blank

41 65 12-0-9-1 41 through 49 will not be assigned.

42 66 12-0-9-2

43 67 12-0-9-3

44 68 12-0-9-4

45 69 12-0-9-5

46 70 12-0-9-6

47 71 12-0-9-7

48 72 12-0-9-8

49 73 12-8-1

4A 74 £or? 12-8-2 6-0 cent or accent grave Accent grave used for left single

4B 75 . 12-8-3 2-14 period quote. On model 7670, * not

4C 76 < 12-8-4 3-12 less than available, and ¢ = ANSCIl 5-11.

4D 77 (12-8-5 2-8 left parenthesis

48 | 78 + 12-8-6 2-1 plus

4F 79 | or : 12-8-7 7-12 vertical bar or broken bar On Model 7670,: not available,
ond | = ANSCII 2-1,

50 80 & 12 2-6 ampersand

51 81 12-11-9-1 51 through 59 will not be assigned.

52 82 12-11-9-2

53 83 12-11-9-3

54 84 12-11-9-4

55 85 12-11-9-5

56 86 12-11-9-6

57 87 12-11-9-7

58 88 12-11-9-8

59 89 11-8-1

5A 90 ! “1-8-2 2-1 exclamation point On Model 7670, ! is I.

58 9 $ 11-8-3 2-4 dollars

5C 92 * 11-8-4 2-10 asterisk

5D 93) 11-8-5 2-9 right parenthesis

5E 94 ; 11-8-6 3-1 semicolon ‘

5F 95 ~or 11-8-7 7-14 tilde or logical not On Model 7670, ~is not available,
and ™ = ANSCII 5-14,

60 96 - 1 2-13 minus, dash, hyphen

61 97 / 0-1 2-15 slash .

62 98 11-0-9-2 62 through 69 will not be assigned.

63 99 11-0-9-3

64 100 11-0-9-4

65 |101 11-0-9-5

66 102 11-0-9-6

67 |103 11-0-9-7

68 |104 11-0-9-8

69 105 0-8-1

6A 106 -~ 12-11 5-14 circumflex On Model 7670 ~is . On Model

68 107 , 0-8-3 2-12 comma 7015 “is A (caret).

6C (108 % 0-8-4 2-5 percent

6D 1109 - 0-8-5 5-15 underline Underline is sometimes called "break

6E | 110 > 0-8-6 3-14 greater than character"; may be printed along

6F |11 ? 0-8-7 3-15 question mark bottom of character line.

70 112 12-11-0 70 through 79 will not be assigned.

71 {113 12-11-0-9-1

72 1114 12-11-0-9-2

73 115 12-11-0-9-3

74 116 12-11-0-9-4

75 N7 12-11-0-9-5

76 (118 12-11-0-9-%

77 [n19 12-11-0-9-7

78 |120 12-11-0-9-8

79 21 8-1

7A 122 : 8-2 3-10 colon

78 123 # 8-3 2-3 number

7C 124 @ 8-4 4-0 at

70 |125 ' 8-5 2-7 apostrophe (right single quote)

7 126 8-6 3-13 equals

7F (127 " 8-7 2-2 quotation mark

t . . .
Hexadecimal and decimal notation.

tt . . -
Decimal notation (crlumn-row).

Appendix A

103

104

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

Escoic! t
Hex. | Dec. Symbot Card Code ANSCII Meaning Remarks
80 |128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 |13 c 12-0-3 6-3 only in XDS standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 1133 e 12-0-5 6-5
86 |134 f 12-0-6 6-6
87 [135 g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 1137 i 12-0-9 6-9
8A |138 12-0-8-2 8A through 90 are unassigned.
88 |139 12-0-8-3
8C {140 12-0-8-4
8D 141 12-0-8-5
8E (142 12-0-8-6
8F | 143 12-0-8-7
90 |144 12-11-8-1
91 145 i 12-11-1 6-10
92 |146 k 12-11-2 6-11
93 |147 | 12-11-3 6-12
94 148 m 12-11-4 6-13
95 (149 n 12-11-5 6-14
96 150 .0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 |152 q 12-11-8 7-1
99 1153 r 12-11-9 7-2
9A | 154 12-11-8-2 9A through Al are unassigned.
98 [155 12-11-8-3
9C | 156 12-11-8-4
90 |157 12-11-8-5
9E |[158 12-11-8-6
9F 1159 12-11-8-7
A0 {160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 | 164 " 11-0-4 7-5
A5 1165 v 11-0-5 7-6
A6 [166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 y 11-0-8 7-9
A9 169 2z 11-0-9 7-10
AA 170 11-0-8-2 AA through B0 are unassigned.
AB 171 11-0-8-3
AC [172 11-0-8-4
AD {173 11-0-8-5
AE (174 11-0-8-6
AF 1175 11-0-8-7
BO 176 12-11-0-8-1
Bl [177 \ 12-11-0~1 5-12 backslash
82 |178 { 12-11-0-2 7-11 left brace
B3 |179 } 12-11-0-3 7-13 right brace
B4 | 180 [12-11-0-4 5-11 left bracket On Model 7670, 5 isg.
B5 [181] 12-11-0-5 5-13 right bracket On Model 7670,] is 1.
B6 |182 12-11-0-6 Bé through BF are unassigned.
B7 |183 12-11-0-7
B8 (184 12-11-0-8
B9 185 12-11-0-9
BA |18 12-11-0-8-2
BB |187 12-11-0-8-
BC 188 12-11-0-
BD | 189 12-11-0-8-
BE 190 12-11-0-
BF 191 12-11-0-8-

t . . .
Hexadecimal and decimal notation.

tt . .
Decimal notation (column-row).

Appendix A

XDS STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC!

Symbol Card Code ANscrft Meaning Remarks
Hex.| Dec.
Co {192 12-0 CO is unassigned.
Cl 193 A 12-1 4-1 C1-C9, DI-D9, E2-E9 comprise the
C2 | 194 B 12-2 4-2 uppercase alphabet.
C3 | 195 C 12-3 4-3
C4 [196 D 12-4 4-4
c5 197 E 12-5 4-5
Cé6 | 198 F 12-6 4-6
C7 | 199 G 12-7 4-7
C8 | 200 H 12-8 4-8
c9 | 201 I 12-9 4-9
CA | 202 12-0-9-8-2 CA through CF will not be assigned.
CB | 203 12-0-9-8-3
CC | 204 12-0-9-8-4
CD | 205 12-0-9-8-5
CE | 206 12-0-9-8-6
CF | 207 12-0-9-8-7
DO | 208 11-0 DO is unassigned.
D1 | 209 J -1 4-10
D2 |210 K 11-2 4-11
D3 211 L 1-3 4-12
D4 | 212 M 11-4 4-13
D5 |213 N 11-5 4-14
D6 | 214 o 11-6 4-15
D7 | 215 P 1-7 5-0
D8 | 216 Q 11-8 5-1
D? | 217 R 11-9 5-2
DA | 218 12-11-9-8-2 DA through DF will not be assigned.
DB | 219 12-11-9-8-3
DC | 220 12-11-9-8-4
DD | 221 12-11-9-8-5
DE | 222 12-11-9-8-6
DF | 223 12-11-9-8-7
EO | 224 0-8-2 EO0, El are unassigned.
El [225 11-0-9-1
E2 [226 S 0-2 5~3
E3 | 227 T 0-3 5-4
E4 | 228 U 0-4 5-5
E5 | 229 \ 0-5 5-6
E6 | 230 w 0-6 5-7
E7 |23 X 0-7 5-8
E8 | 232 Y 0-8 5-9
E9 | 233 z 0-9 5-10
EA | 234 11-0-9-8-2 EA through EF will not be assigned.
EB | 235 11-0-9-8-3
EC | 236 11-0-9-8-4
ED | 237 11-0-9-8-5
EE | 238 11-0-9-8-6
EF | 239 11-0-9-8-7
FO 240 0 0 3-0
F1 |24) 1 1 3-1
F2 | 242 2 2 3-2
F3 |243 3 3 3-3
F4 | 244 4 4 3-4
F5 245 5 5 3-5
F6 | 246 6 6 3-6
F7 | 247 7 7 3-7
F8 |248 8 8 3-8
F9 | 249 9 9 3-9
FA | 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB | 251 12-11-0-9-8-3
FC | 252 12-11-0-9-8-4
FD | 253 12-11-0-9-8-5
FE | 254 12-11-0-9-8-6
FF | 255 DEL 12-11-0-9-8-7 delete Special — neither graphic nor con-
trol symbol.

t . . .
Hexadecimal and decimal notation.

tt . . i
Decimal notation (cclumn-row).

Apéendix A

105

HEXADECIMAL ARITHMETIC

106

ADDITION TABLE

1 2 3 4 5 6 7 8 ? A B C D E F

02 03 04 05 06 07 08 09 0A 0] 0C 0D Ot OF 10

03 04 05 06 07 08 09 0A 0B 0c 0D OE OF 10 1

04 05 06 07 08 09 0A 08 0C 0D 03 OF 10 1 12

05 06 07 08 09 0A 0B 0C 0b OE OF 10 11 12 13

06 07 08 09 0A 0B oc 0D 3 OF 10 11 12 13 14

07 08 09 0A 0B oc 0D OE OF 10 1 12 13 14 15

08 09 0A 0B 0C 0D Ot OF 10 11 12 13 14 15 16

09 0A 0B 0c 0D OE OF 10 1 12 13 14 15 16 17

0A 0B 0C 0D OE OF 10 11 12 13 14 15 16 17 18

0B 0C 0D OE OF 10 11 12 13 14 15 16 17 18 19

0C oD OE OF 10 [12 13 14 15 16 17 18 19 1A

0D Ot OF 10 1 12 13 14 15 16 17 18 19 1A 1B

OE OF 10 1 12 13 14 15 16 17 18 19 1A 1B 1C

OF 10 11 12 13 14 15 16 17 | .18 19 1A 18 1C 1D

10 11 12 13 14 15 16 17 18 19 1A 1B 1C iD 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F
2 04 06 08 0A 0C (03 10 12 14 16 18 1A 1C 1E
3 06 09 0C OF 12 15 18 1B 1E 2] 24 27 2A 2D
4 08 0OC 10 14 18 1C 20 24 28 2C 30 34 38 3C
OA OF 14 19 1E 23 28 2D 32 37 3C 4 46 4B
6 oCc 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7€ 87
A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F A A5
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D 1A 27 34 41 4 58 68 75 82 8F 9C A9 Bé c3
E 1C 2A 38 46 54 62 70 7E 8C A A8 B6 C4 D2
F 1E 2D 3C 48 5A 69 78 87 96 AS B4 Cc3 D2 El

Appendix A

72
152

23
163
DE O

8AC7

281
503
057
921

68
099
592
474
599
594
504

17
ES8

218
5AF3
8D7E
86F2
4578
B6B3
2304

268
294
719
511
186
976
627
037
606

98
5F5

3B9A
5408
4876
D4A5
4E72
107A
A4Cé6
6FC1
5D8A
A764
89E8

65
048
777
435
967
476
627
044
710
370
927

536
576
216
456
296
736
776
416
656

TABLE OF POWERS OF SIXTEEN 0

n 167"

0O 0.10000 00000 00000 00000 x 10

] 0.62500 00000 00000 00000 x 10"

2 0.39062 50000 00000 00000 x 10~2

3 0.24414 06250 00000 00000 x 1073

4 0.15258 78906 25000 00000 x 10~%

5 0.95367 43164 06250 00000 x 10°°

6 0.59604 64477 53906 25000 x 107

7 0.37252 90298 46191 40625 x 10°°

8 0.23283 06436 53869 62891 x 1077

9 0.14551 91522 83668 51807 x 10°'°

10 0.90949 47017 72928 23792 x 10”2

N 0.56843 41886 08080 14870 x 10°'°

12 0.35527 13678 80050 09294 x 10~ '4

13 0.22204 46049 25031 30808 x 10”0

14 0.13877 78780 78144 56755 x 10”16

15 0.86736 17379 88403 54721 x 1078
TABLE OF POWERS OF TEN o

n 107"

0 10000 0000 0000 0000

1 0.1999 9999 9999 999A

2 0.28F5 C28F 5C28 F5C3 x 167

3 04189 3748 C6A7 EF9E x 1672

4 068DB B8BAC 710C B296 x 163

5 0.A7C5 AC47 1B47 8423 x 16°¢

6 0.10C6 F7A0 BSED 8D37 x 1674

7 0.1AD7 F29A BCAF 4858 x 16

8 0.2AF3 1DC4 6118 73BF x 1670

9 0.44B8 2FA0 9B5A 52CC x 167

10 064DF3 7F67 5EF6 EADF x 1678

n 0.AFEB FFOB CB24 AAFF x 1670

12 0.1197 9981 2DEA 1119 x 16

13 0.1C25 C268 4976 81C2 x 16°1°

14 0.2D09 370D 4257 3604 x 16~V

15 0.480E BE7B 9D58 566D x 16 12

16 0734A CASF 6226 FOAE x 1613

17 08877 AA32 36A4 B449 x 16"

18 0.1272 5DD1 D243 ABAl x 164

19 0.1D83 C94F B6D2 AC35 x 1677

Appendix A

107

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexa-
decimal integers in the range 0—FFF and decimal integersin
the range 0—4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as an integer times
16™", where n is the number of significant hexadecimal

Hexadecimal Decimal Hexadecimal Decimal places to the right of the hexadecimal point.

01 000 4 096 20 000 131 072 0. CA9BF3;, = CA9 BF3;4 x 1676

02 000 8192 30 000 196 608

03 000 12 288 40 000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16 384 50 000 327 680

05 000 20 480 60 000 393 216 CA9 BF316 = 13 278 195]0

06 000 24 576 70 000 458 752

07 000 28 672 80 000 524 288 3. Multiply the decimal equivalent by 16™"

08 000 32768 90 000 589 824

09 000 36 864 AO 000 655 360 13 278 195

0A 000 40 960 BO 000 720 896 x 596 046 448 x 10716

0B 000 45 056 Co0 000 786 432 0.791 442 096,

0C 000 49 152 DO 000 851 968

0D 000 53 248 EO 000 917 504 Decimal fractions may be converted to hexadecimal fractions
OE 000 57 344 Fo 000 983 040 by successively multiplying the decimal fraction by 16, 10°
OF 000 61 440 100 000 1 048 576 After each multiplication, the integer portion is removed to
10 000 65 536 200 000 2097 152 form a hexadecimal fraction by building to the right of the
11 000 69 632 300 000 3145728 hexadecimal point. However, since decimal arithmetic is
12 000 73728 400 000 4 194 304 used in this conversion, the integer portion of each product
13 000 77 824 500 000 5 242 880 must be converted to hexadecimal numbers.

14 000 81 920 600 000 6 291 456

15 000 86 016 700 000 7 340 032 Example: Convert 0.895(to its hexadecimal equivalent
16 000 90 112 800 000 8 388 4608 0.895

17 000 94 208 900 000 9437 184 ’ 1

18 000 98 304 AQO 000 10 485 760 ®—338-

19 000 102 400 BOO 000 11534 336)

1A 000 106 496 C00 000 12 582 912 m%

1B 000 110 592 D00 000 13 631 488 /

iC 000 114 688 E0O0 000 14 680 064 CW%%

1D 000 118 784 FO0 000 15 728 640 /

1E 000 122 880 1 000 000 16777 216

1F 000 126 976 2000 000 33 554 432 0.E51Ey, 720

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 (€034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 00865 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 | 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 | 0112 0113 0l14 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0AO0 | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 018 0187 0188 0189 0190 019N
0CO | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

108 Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 i 2 3 4 5 6 7 8 9 A B C D E F
100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 035)
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 03643 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1CO | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
TEC | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1IFO | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 J531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 078 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 | 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 [0992 0993 1994 0995 0996 0997 0998 0999 1000 .1001 1002 1003 1004 1005 1006 1007
3F0 [1008 1009 1310 101} 1012 1013 1014 1015 10i6 1017 1018 1019 1020 1021 1022 1023

Appendix A

109

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

400 | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 | 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 § 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 116 1117 1118 119
460 | 1120 1121 1122 1123 1124 125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151}

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 | 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B0 | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C0 | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 125} 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0] 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
S10 1 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SA0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 145]) 1452 1453 1454 1455
580 | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
SDO | 1488 1489 1490 149 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SE0 | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
S5FO | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 ¢ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 | 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO | 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6F0 1776 V777 1778 1779 1780 1781 1782 1783 1784 - 1785 1786 1787 1788 1789 1790 1791

110 Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
700 | 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C0 | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 211}
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EQ | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2309 2310 2311} 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
QAD | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 [2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EQ | 2528 2529 2530 2531 2532 2533 2534 2535 2536 - 2537 2538 2539 2540 2541 2542 2543
OF0 | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix A

m

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

112

0 1 2 3 4 5 6 7 8 9 A B C D E F
A00 | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2403 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
ABO | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAQ | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFQ | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 [2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8O | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9O | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 311 3112 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3i83
C70 | 3184 3185 318 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO0 | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO | 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5) 7 8 9 A B C D E F
00O | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3341 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
09 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAQ | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO § 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3535 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
ECO | 3584 3385 358 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
F10 | 3500 3601 3602 3403 3604 3605 3606 3807 3608 3609 310 3611 3612 3613 3614 3415
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
250 1 3664 3665 3666 3667 3668 3669 3470 3471 3672 3673 3674 3675 3676 3677 3678 3679
£60 | 3580 3681 3682 3583 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3896 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 37i0 3711
EB0 | 3712 37i3 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAQ | 3744 3745 3746 3747 748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 38465 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 38865 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAQ | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 403!
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix A

113

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

Hevadecimel

Decimal

" S

Pexadecima!

Decimai

Hexadecimal

Decima!l

Hexadecimal

Decimoi

.06 0C 00 00
.00 0000 00
G230 0C 0%
.02 26 00 00
0400 00 00
.03 02000 00
.06 06 06 00
.07 00 0C 00
.08 0000 GO
.09 €0 00 0C
.0A 0006 00
.08 2000 0C
.0C D000 0OC
.0D 90 00 00
.0F 00 00 00
.CF 00 00 06

.10 00 00 00
1
2

GO 00 0C
LI2 0000 06
.12 00 00 00
Ld 000000
.15 00 00 00
.1é 00 0C 00
170000 00
.18 00 00 00
.19 00 00 05
JPA 0000 00
1B 050000
.1C 6C 00 00
1D 00 00 06
J1E 00 00 00
JIF 00 0C 00

GG 00 00
00 00 00
GC 00 00
00 GG 00
00 00 0G
00 00 00
00 00 GC
00 00 00
00 00 00
0C 00 00
0G 00 00
00 00 00
00 G0 oC
00 00 00
00 00 0G
00 00 00

.30 00 00 60
.31 0000 00
.32 0000 CC
.33 0000 00
.34 000000
.35 00 0C 6C
.36 00 00 00
.37 0000 00
.38 0000 00
.39 0000 00
.3A 00 00 0C
.36 00 00 00
.3C 00 00 00
.3D 00 00 00
.38 00 00 00
.3F 00 00 00

)
LAY - D

INECESERRE N
F-S

(&3

R RS RO R RD R M RU RO B
DB D ® IO

mmoO O

>

00000 CCO00
00390 42500
06781 25000
01171 87500
Q1552 50000
01953 12500
02343 75000
02734 37500
.03125 00000
.035'5 62500
03906 25000
04294 87500
04487 50000
.05078 12500
05448 7200C
.05859 3750¢

.06220 GCOOC
.064640 62500
.07031 25009
07421 8750C
.07812 50000
.082C3 12500
08593 75000
.08934 37500
09375 00000
.09765 62500
L10136 25000
10546 87500
10937 50000
11328 12500
11718 75000
12109 37500

.125C0 0000C
12890 62500
13281 25000
13671 87560
- 14042 50000
14453 12500
14843 75000
.15234 37500
15625 00000
16015 62500
. 16406 25060
16796 87500
17187 50000
17578 12506
17968 75000
18359 37500

.18750 00000
19140 62500
19531 25000
19921 87500
.20312 50000
.20703 12500
.21093 75000
.21484 37500
.21875 00000
.22265 62500
.22656 25000
.23046 87500
.23437 50000
.23828 12500
.24218 75000
.24609 37500

4G 000G 00
41 000000
.42 GG 00 O
.43 00 0C 35
.44 02 00 00
.45 G000 0C
.46 00 06 20
.47 00006 90
.48 00 00 00
.4% 00 0C 00
.44 06 0C 00
.48 000000
.4C 00 00 00
.4D 00 0C 00
4AE 90 00 00
AF 00 00 0G

.50 0000 G2
.51 00 00 00
.52 0006 00
.53 0000 00
.54 00 0C GG
.55 00 0¢C 00
.56 000G 00
.57 00 00 00
.58 000000
.59 00 00 00
-5A 06 00 00
.58 00 00 00
.5C 00 00 00
.50 00 00 00
.5E 00 00 00
SF 0C 0000

.60 00 00 GO
.61 0000 00
.62 00 06 00
.63 00 00 0C
.64 00 00 00
.65 00 00 02
.66 0000 GO
.67 0009 CO
.68 00 00 00
.69 0000 GO
-6A 00 00 00
.68 00 00 GO
-6C 00 00 00
.6D 0000 00
.6E 00 00 00
.6F 00 00 00

.70 0000 00
.71 0000 Q0
.72 00 00 0C
.73 00 00 00
.74 00 00 0OC
.75 00 00 00
.76 0000 0C
.77 0000 00
.78 00 00 00
.79 0000 00
.7A 00 00 00
.78 00 00 00
.7C 00 00 00
.70 00 00 00
.7E 00 00 00
.7F 00 00 00

. 25000 0000C
.25390 62500
.25781 25000
26171 8750¢
. 26542 50000
26853 12500
.27343 75006
27734 37500
-28125 00000
.28515 62500
.28905 25000
29295 87560
.29687 5000¢
.30078 12500
.30468 750CC
.3085% 37500

.31250 00000
.31640 62500
.3203% 25000
.32421 87500
.32812 50000
.33203 12500
.33593 75000
.33984 37500
.34375 0000C
.34765 62500
35156 25000
.35546 87500
.35937 50000
.36328 12500
.36718 75000
37189 37500

.37500 00000
.37890 62500
.38281 25000
.38671 87500
.39062 50000
.39453 12500
.39843 75000
.40234 37500
40625 00600
41015 6250C
41406 25000
41794 8750¢
42187 50000
.42578 12500
42968 75000
43359 37500

-43750 00000
.44140 62500
44531 25000
44921 87500
45312 50000
.45703 12500
.46093 75000
46484 37500
.46875 00000
47265 62500
47656 25000
.48046 87500
.48437 50000
.48828 12500
.49218 75000
49609 37500

-8C 00 00 90
.81 0000 0G
.82 00 0C 00
.83 60 06 05
.84 00 0C 00
.85 00 00 00
.86 00 00 00
.87 00 00 06
.88 00 00 00
.89 00 00 00
-8A 00 00 00
.88 0C 0C 00
.8C 00 0C 00
.80 05 00 00
.8E 00 0C 00
.8F 00 00 00

.90 00 00 00
.21 00 00 0C
.92 00 00 00
.93 0000 0C
.94 00 00 00
.95 00 00 00
.96 00 00 CC
.$7 0000 0C
.98 00 00 00
.99 0C 00 00
.94 00 00 0C
.98 00 00 0C
.9C 00 0C 00
.¢D 00 00 00
.98 00 00 00
.9F 00 00 00

-AG 0C 00 0G
Al 00 CO 00
-A2 0000 00
A3 00 00 0C
.A4 00 00 00
.A5 00 00 00
A6 0G 00 00
.A7 00 00 00
-A8 00 00 00
-A9 0000 00
.AA 00 00 00
.AB 00 06 00
.AC 00 00 00
-AD 00 00 00
.AE 0000 00
.AF 00 00 00

B0 00 00 00
.B1 00 00 00
.82 00 00 60
.B3 00 00 G0
.B4 00 00 00
.B5 00 00 00
.B& 00 00 00
.B7 00 00 00
.B8 00 00 00
.B9 00 00 00
.BA 00 00 0C
.BB 00 00 00
.BC 00 00 00
.BD 00 00 00
.BE 00 00 00
.BF 00 00 00

.50000 000GC
.503%C 62500
50783 25000
SH71 87500
.51562 50000
51953 12500
.32343 75000
52734 37500
-53125 00000
-53515 62500
53906 25000
.54296 8750C
.54687 50000
.55078 12500
-35468 75000
.55859 37500

.56250 00000
56640 62500
57031 25000
.5742% 87500
.57812 50000
.58203 12500
.58593 75000
.58984 37500
.59375 00000
59765 62500
6015¢ 25000
60546 87500
.60937 50000
.61328 12500
61718 75000
.62109 37500

62500 00000
.62890 62500
.63281 25000
63671 87500
.64062 50000
.64453 12500
.64843 75000
.65234 37500
65625 00000
66015 62500
66406 25000
66796 87500
.67187 50000
.67578 12500
.67968 75000
.68359 37500

68750 00000
.69140 62500
169531 25000
69921 87500
.70312 50000
.70703 12500
.71093 75000
.71484 3750C
.71875 00000
72265 62500
.72656 25000
.73046 87500
.73437 50000
.73828 12500
.74218 75000
74609 37500

220 00 06 06
.C¥ 00 00 00
.C2 00 00 00
(3 0000 00
.C4 00 0C 00
.C5 0006 06
.Cé 00 00 0C
-C7 00 00 00
.C8 0000 00
.C?9 00 00 06
LA 0006 00
.CE 00 00 0C
-CC 00 00 00
.CD 00 00 0C
.CE 00 00 00
.CF 00 00 00

.DO 00 00 00
.D1 00 00 0C
.D2 00 00 00
.D3 00 00 0C
.04 00 00 0C
.D5 00 00 0¢
.Ds 00 00 00
.D7 00 00 GG
.D8 0C 00 06
.D9 00 00 0C
.DA 00 00 00
.DB 00 63 00
.DC 00 00 00
.DD 00 00 GO
.DE 00 00 0C
.DF 00 00 0C

. -EQ 00 00 00

-E1 00 00 00
.E2 00 00 OC
.E3 000000
-E4 0000 00
.E5 00 00 00
.E6 00 00 00
-E7 00 00 00
.E8 0000 00
.E9 000000
.EA 00 00 00
-EB 0000 00
.EC 00 00 ¢C
.ED 00 00 0C
-EE 00 00 00
.EF 00 00 0C

.FO 00 00 00
.F1 00 00 00
.F2 00 00 00
-F3 0000 0C
.F4 00 0C 00
.F5 00 00 00
.F6 00 00 00
.F7 00 00 00
.F8 00 00 06
.F9 00 00 00
.FA 0C 00 00
.FB 00 00 00
.FC 00 00 00
-FD 00 00 00
.FE 00 00 00
.FF 00 00 00

.89843 75000

.91405 25000
91795 87500
.92187 50000
.92578 12500
.92968 75000
.93359 37500

.93750 00000
.94140 62500
94531 25000
.94921 87500
.95312 50000
.95703 12500
.96093 75000
96484 37500
.96875 00000
97265 62500
97656 25000
-98046 87500
.98437 50000
.98828 12500
.99218 75000
99609 37500

.7550C 0036Y i
75390 62500
7578Y 25008
76571 87509
76552 50007
76553 125G5
77343 750600
77734 37500
.78125 00600
78515 62500
.7890¢ 25000
79296 87500
79687 50000
.80078 12500
.80468 75000
80859 375¢C

.81250 0000C
81640 62500
.82031 25000
.82421 87500
.82512 50000
.83203 12500
.83593 75000
.83984 37500
.84375 00000
84765 62500
853156 25000
.85546 87500
.85937 50000
-86328 12500
.86718 75000
.87109 37500

.87500 00000
.87890 62500
.88281 25000
.88671 87500
-89062 50000
.89453 12500

.90234 37500
90625 00000
91015 62500

114 Appendix A

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decima! Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 0000 .00000 00000 .0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 00 00 00292 96875
.00 01 0000 .00001 52587 .0041 0009 .00099 18212 .0081 0000 .00196 83837 .00 C1 00 00 .00294 49462
.00 02 0000 .00003 05175 .00 42 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 00 00 100296 02050
.00 03 0000 .00004 57763 .00 43 0000 .00102 23388 .0083 00 00 .00199 8903 .00 C3 00 00 .00297 54638
.00 04 0000 .00006 10351 .00 44 0000 .00103 75976 .0084 0000 .00201 41601 .00 C4 00 00 .00299 07225
0005 0000 .00007 62939 .0045 0000 .00105 28564 .00 85 00 00 .00202 94189 .00 C5 00 00 .00300 59814
.00 G4 0000 .00009 15527 .0046 0000 .00106 81152 .00 86 00 00 .00204 46777 .00 C6 00 00 .00302 12402
0007 0000 .00010 68115 .0047 0000 .00108 33740 .00 87 00 00 .00205 99365 .00 C7 00 00 .00303 64990
.00 08 0000 .00012 20703 .0048 0000 .00109 86328 .00 88 00 00 .00207 51953 .00 C8 00 00 .00305 17578
.00 09 0000 .00013 73291 .004%9 0000 .00111 38916 .00 89 00 00 .00209 04541 .00 C9 00 00 .00306 70166
.00 OA 0000 .00015 25878 .004A 0000 .00112 91503 .008A 0000 .00210 57128 .00 CA 00 00 .00308 22753
.00 0B 0000 .00016 78466 .00 4B 0000 .00114 44091 .0088 00 00 .00212 09716 .00 CB 00 00 .00309 75341
.00 0C 0000 .00018 31054 .004C 0000 .00115 96679 .00 8C 00 00 .00213 62304 .00 CC 00 00 .00311 27929
.00 CD 0000 .00019 83642 .004D 0000 .00117 49267 .008D 0000 .00215 14892 .00 CD 00 00 .00312 80517
.00 OE 0000 .00021 36230 .00 4E 0000 .00119 01855 .00 8E 00 00 .00216 67480 .00 CE 00 00 .00314 33105
.00 OF 0000 .00022 88818 .004F 0000 .00120 54443 .00 8F 00 00 .00218 20068 .00 CF 00 00 .00315 85693
.00 10 00 00 .00024 41406 .0050 0000 .00122 07031 .00 20 00 00 .00219 72656 .00 DO 00 00 .00317 38281
.00 11 0000 .00025 93994 0051 0000 .00123 59619 .00 9?1 00 00 .00221 25244 .00 D1 00 00 .00318 90869
0012 0000 .00027 46582 .00 52 0000 .00125 12207 .00 92 00 00 .00222 77832 .00 D2 00 0G .00320 43457
.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .00 93 00 00 .00224 30419 .00 D3 00 00 .00321 96044
.00 14 0000 .00030 51757 .0054 0000 .00128 17382 .00 94 00 00 .00225 83007 .00 D4 00 00 .00323 48632
.00 15 0000 .00032 04345 .0055 0000 .00129 69970 .00 95 00 00 .00227 35595 .00 D5 00 00 .00325 01220
.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .00 96 00 00 .00228 88183 .0C D6 00 00 .00326 53808
.00 17 0000 .00035 09521 .0057 0000 .00132 75146 .00 97 00 00 .00230 40771 .00 D7 00 00 .00328 063%6
.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .00 98 00 00 .00231 93359 .00 D8 00 00 .00329 58984
.00 19 0000 .00038 14697 .0059 0000 .00135 80322 .00 99 00 00 .00233 45947 .00 D9 00 00 .00331 11572
.00 TA 0000 .00039 67285 .00 5A 0000 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .00332 64160
.00 18 0000 .00041 19873 .0058 0000 .00138 85498 .00 98 00 00 .00236 51123 .00 DB 00 00 .00334 16748
.00 1C 0000 .00042 72460 .005C 0000 .00140 38085 .00 9C 00 00 .00238 03710 .00 DC 00 00 .00335 69335
.00 1D 0000 .00044 25048 005D 0000 .00141 90673 .00 9D 00 00 .00239 56298 .00 DD 00 00 .00337 21923
.00 1E 0000 .00045 77636 .005E 0000 .00143 43261 .00 98 00 00 .00241 08886 .0C DE 00 00 .00338 74511
.00 1F 0000 .00047 30224 .00 5F 0000 .00144 95849 .00 9F 00 00 .00242 61474 .00 DF 00 00 .00340 27099
.00 20 0000 .00043 82812 .00 60 0000 .00146 48437 .00 A0 00 00 .00244 14062 .00 E0 00 00 .00341 79687
.00 21 0000 .00050 35400 .0061 0000 .00148 01025 .00 A1 00 00 .00245 66650 - .00 El 0000 .00343 32275
.00 22 0000 .00051 87988 0062 0000 .00149 53613 .00 A2 00 00 .00247 19238 .00 £2 00 00 .00344 84863
.00 23 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 00 00 .0034% 37451
.00 24 0000 .00054 93164 .0064 0000 .00152 58789 .00 A4 00 00 .00250 24414 .00 E4 00 00 .00347 90039
.00 25 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 00 00 .00251 77001 .00 E5 00 00 .00349 42624
.00 26 0000 .00057 98339 .0066 0000 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 00 00 .00350 95214
.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 00 00 .00254 82177 .00 E7 0000 .00352 47802
.00 28 00 00 .00061 03515 .0068 0000 .00158 69140 .00 A8 00 00 .00256 34765 .00 E8 00 00 .00354 00390
.00 29 0000 .00062 56103 0069 0000 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 0000 .00355 52978
.00 2A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 00 00 .00357 05566
.00 2B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 00 00 .00260 92529 .00 EB 00 00 .00358 58154
.00 2C 0000 .00067 13867 .006C 0000 .00164 79492 .00 AC 00 00 .00262 45117 .00 EC 00 00 .00360 10742
.00 2D 00 00 .00068 66455 .006D 0000 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 00 00 .00341 63330
.00 2E 0000 .00070 19042 .00 6E 0000 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 00 00 .00363 15917
.00 2F 0000 .00071 71630 .004F 0000 .00169 37255 .00 AF 00 00 .00267 02880 .00 EF 00 00 .00364 68505
.00 30 0000 .00073 24218 .00 70 00 00 .00170 89843 .00 BO 0000 .00268 55468 .00 FO 0C 00 .00366 21093
.00 31 0000 .00074 76806 .0071 0000 .00172 42431 .00 B1 0000 .00270 08056 .00 F1 00 00 .00367 73681
.0032 0000 .00076 29394 .0072 0000 .00173 95019 .00 B2 0000 .00271 60644 .00 F2 00 00 .00369 26269
.00 33 0000 .00077 81982 .0073 0000 .00175 47607 .00 B3 00 00 .00273 13232 .00 F3 00 00 .00370 78857
.00 34 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .00274 65820 .00 F4 00 00 .00372 31445
.00 35 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033
.00 36 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 70996 .00 F6 00 00 .00375 36621
.00 37 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 00 00 .00279 23583 .00 F7 00 00 .00376 89208
.00 38 0000 .00085 44921 .0078 0000 .00183 10546 .00 B8 0000 .00280 76171 .00 F8 00 00 .00378 41796
.00 39 0000 .00086 97509 .0079 0000 .00184 63134 .00 B9 0000 .00282 28759 .00 F9 00 00 .00379 94384
.00 3A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 00 00 .00283 81347 .00 FA 00 00 .00381 46972
.00 38 0000 .00090 02685 .007B 0000 .00187 68310 .00 BB 00 00 .00285 33935 .00 FB 00 00 .00382 99550
.00 3C 0000 .00091 55273 .007C 0000 .00189 20898 .00 BC 0000 .00286 86523 .00 FC 00 00 .00384 52148
.00 3D 0000 .00093 07861 .007D 0000 .00190 73486 .00 BD 0000 .00288 39111 .00 FD 00 00 .00386 04736
.00 3E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 00 00 .00387 57324
.00 3F 0000 .00096 13037 .007F 0000 .00193 78662 .00 BF 0000 .00291 44287 .00 FF 00 00 .00389 09912

Appendix A 115

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimel Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal
.000000 00 .00000 00000 .00 00 40 00 .00000 38146 .000080 00 .00000 76293 .00 00 C2 00 .00001 14440
0060 01 00 .00000 00596 .00 00 41 00 .00000 38743 000081 00 .00000 76889 .0000C1 00 .0000! 15036
.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .000082 00 .00000 77486 .0000C2 00 .00001 15633
.00 00 03 00 .00000 01788 .00 00 43 00 .00000 39935 .000083 00 .00000 78082 .00 00C3 00 .00001 16229
.00 00 04 00 .00000 02384 .00 0044 00 .00000 40531 .0000 84 00 .00000 78678 .0000C4 00 .00001 16825
.00 0005 00 .00000 02980 .00 0045 00 .00000 41127 .000085 00 .00000 79274 .0000C5 00 .00001 17421
.00 0006 00 .00000 03576 .00 0046 00 .00000 41723 .00 0086 00 .00000 79870 .0000 Cé6 00 .00001 18017
.00 0007 00 .00000 04172 .00 0047 00 .00000 42319 .00 0087 00 .00000 80466 .0000C7 00 .00001 18613
.00 0008 00 .00000 04768 .00 0048 00 .00000 42915 .000088 00 .00000 81062 .0000C8 00 .0000% 19209
.00 00 09 00 .00000 05364 .00 0049 00 .00000 43511 .0000 89 00 .00000 81658 .0000 C? 00 .0000% 19805
.00 00 0A 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .0000 CA 00 .00001 20401
.00 00 0B 00 .00000 06556 .00 0048 00 .00000 44703 .00 0088 00 .00000 82850 .00 00 CB 00 .00001 20997
.00 00 0C QOC .00000 07152 .00 00 4C 00 .00000 45299 .00008C 00 .00000 83446 .00 00 CC 00 .0000! 21593
.00 00 OD 00 .00000 07748 .00 00 4D 00 .00000 45895 .00008D 00 .00000 84042 .0000CD 00 .00001 22189
.00 00 OE OC .00000 08344 .00 00 4E 00 .00000 44491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785
.00 CO OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 00 CF 00 .00001 23381
.000C 1C 00 .00000 09536 .00 0050 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 DO 00 .00001 23977
000011 0OC .00000 103132 .00 00 51 00 .00000 48279 .000091 00 .00000 86426 .00 00 DI 00 .00001 24573
.000012 00 00000 10728 .00 0052 00 .00000 48875 .0000 92 00 .00000 87022 .00 00 D2 00 .00001 25169
000013 00 .00000 11324 .000053 CO .00000 49471 .00 00 93 00 .00000 87418 .00 00 D3 00 .00001 25765
0000 14 CcO .00000 11920 .00 0054 00 .00000 50067 .00 0094 00 .00000 88214 .00 00 D4 00 .000C1 26361
.00 0015 00 .00000 12516 .00 0055 00 .00000 50663 .000095 00 .00000 88810 .00 00 D5 00 .00001 26957
000016 20 .00000 13113 .00 00 56 00 .00000 51259 .00 0096 00 .00000 89406 .00 00 D6 00 .00001 27553
.000017 00 .00000 13709 000057 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D7 GO .00001 28149
.00 00 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 0098 00 .00000 90599 .00 00 D8 00 .00001 28744
.00 0019 00 .00000 14901 .0000 59 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .00001 29342
.06 00 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 DA 00 .00001 29938
.00 00 18 00 .00000 16093 .00 00 5B 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DB 00 .00001 30534
.00 00 1C 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DC 00 .00001 31130
.00 00 1D 00 .00000 17285 .00 005D 00 .00000 55432 .00 00 9D 00 .00000 93579 .00 00 DD 00 .00001 31726
.00 00 1E 00 .00000 17881 .00 00 58 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DE 00 .00001 32322
.00 00 IF 00 .0000C 18477 .00 0C 5F 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00.DF 00 .00001 32918
.00 00 2¢ 00 .00000 19073 .00 00 60 00 .00000 57220 .00 00 A0 00 .00000 95367 .00 00 EO 00 .00001 33514
.00 00 21 00 .00000 19669 .00 0061 00 .00000 57816 .00 00 A1 00 .00000 95963 .00 00 E1 00 .00001 34110
0000 22 00 .00000 20265 .000062 00 .00000 58412 .00 60 A2 00 .00000 96559 .00 00 E2 00 .00001 34706
.00 00 23 00 .00000 20861 .00 0063 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302
.00 00 24 00 00000 21457 .00 0064 00 .00000 59604 .00 00 A4 00 .00000 97751 .00 00 E4 00 .00001 35898
.00 00 25 00 .0000C 22053 .00 00 65 00 .C0000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494
.00 00 26 00 .000CO 22649 .00 00 66 00 .00000 60796 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 37090
0000 27 00 .00000 23245 .000067 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37586
.00 0028 00 .00000 23841 .00 0068 00 .00000 61988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282
00 00 29 00 .00000 24437 .0000 69 CO .00000 62584 .00 00 A9 00 .00001 00731 .00 00 E9 00 .00001 38878
00 00 2A 00 .00000 25533 .00 00 6A 00 .00000 63180 .00 00 AA 00 .00001 01327 .00 00 EA 00 .00001 39474
.00 C0 2B 0C .00000 25629 .00 0068 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EB 00 .00001 40070
0000 2C 00 .00000 26225 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .00 00 EC 00 .00001 40666
.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 00 ED 00 .00001 41263
.00 G0 2E 00 .06000 27418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE 00 .000C01 41859
.00 60 2F 00 .00000 28014 .00 00 6F 00 .00000 66161 .00 00 AF Q0 .00001 04308 .00 00 EF 00 .00001 42455
.0G GC 30 2C .0000C 28610 000070 00 .00000 66757 .00 00 BO 00 .00001 04904 .00 00 FO 00 .00001 43051
.00 00 3t 00 .00000 29206 000071 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 00001 43647
.00 60 32 00 .0000C 29802 .00 GG 72 00 .00000 67949 .00 00 B2 0C .0C001 06094 .00 00 F2 00 .00001 44243
.00 00 33 00 .00000 30398 000073 00 .00000 68545 .00 00 83 00 .00001 06692 .00 00 F3 00 .00001 44339
000034 00 .00000 30994 .00 0074 00 .00000 69141 .00 00 B4 00 .00001 07288 .00 00 F4 00 .00001 45435
.00 00 35 00 .00000 31590 .60 0075 00 .00000 69737 .00 00 B5 00 .00001 07884 0000 F5 GO .00C01 46031
D000 36 00 00000 32186 G0 0076 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627
.00 0C 37 0C .00000 32782 000077 00 .00000 70929 .00 00 B7 00 .00001 09076 .0C GO F7 00 .00001 47223
.00 00 38 0C .00000 33378 .00 00 78 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 CO0 F8 00 00001 47819
D000 29 00 .00000 33974 .00 00 7% 00 .00000 72121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415
0050 3A 20 .0000C 34570 .00 00 74 50 .00000 72717 .00 00 BA 00 .60001 10864 .00 00 FA 00 00CT 49011
GO 30 38 00 .COC00 35166 .00 0078 4G .00000 73313 .00 00 BB 00 .0C001 11460 .00 00 FB 00 00001 49507
L0000 35762 0000 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 00001 50203
.000C0 34338 D000 7D 30 .00000 74505 .00 00 8D 00 .00001 12552 .00 00 FD 00 .G0001 20799
.CO0J0 36934 - Q00078 00 .000GO 75101 .00 00 BE 00 .0COO1 13248 .00 90 FE 00 00001 51295
L0000 37550 L0000 7F CC .00000 75697 .00 00 BF 00 20001 13844 | .00 00 FF 00 00001 2199

16 Appendix A

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadec ' mal Decimal

.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 00447
.00 00 00 01 .00000 00002 .00 00 00 41 .00000 00151 .00 00 00 81 .00000 00300 .00 0000 C1 .00000 00449
.00 00 00 02 .00000 00004 .00 00 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 0000 C2 .00000 00451
.00 00 00 03 .00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00305 .00 00 00 C3 .00000 00454
.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 84 .00000 00307 .00 060 00 C4 .00000 00456
.00 00 00 05 .00000 00011 .00 00 00 45 .00000 00160 .00 00 00 85 .00000 00309 .00 00 00 C5 .00000 00458
.00 00 00 06 .00000 00013 .00 00 00 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461
.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00165 .00 00 00 87 .00000 00314 .0000 00 C7 .00000 00463
.00 00 00 08 .00000 00018 .00 00 00 48 .00000 00167 .00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465
.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 .00 00 00 89 .00000 00318 .00 00 00 C9 .00000 00467
.00 00 00 0A .00000 00023 .00 00 00 4A .00000 00172 .00 00 00 8A .00000 00321 .00 00 00 CA .00000 00470
.00 00 00 0B .00000 00025 .00 00 00 48 .00000 00174 .00 00 00 8B .00000 00323 .00 0000 CB .00000 00472
.00 00 00 OC .00000 00027 .00 00 00 4C .00000 00176 .00 00 00 8C .00000 00325 .00 00 00 CC .00000 00474
.00 00 00 OD .00000 00030 .00 00 00 4D .00000 00179 .00 00 00 8D .00000 00328 .000000CD .00000 00477
.00 00 00 OE .00000 00032 .00 00 00 4E .00000 00181 .00 00 00 8E .00000 00330 .00 00 00 CE .00000 00479
.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 00 00 CF .00000 00481
.00 0000 10 .00000 00037 .00 00 00 50 .00000 00186 .00 00 00 90 .00000 00335 .00 00 00 DO .00000 00484
.0C 0000 11 .00000 00039 .00 00 00 51 .00000 00188 .00 00 00 91} .00000 00337 .00 00 00 DI .00000 00486
.00 0000 12 .00000 00041 .00 00 00 52 .00000 00190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488
.000000 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 00 D3 .00000 00491
.00 00 00 14 .00000 00046 .00 00 00 54 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4 .00000 00493
.00 00 00 15 .00000 00048 .00 00 00 55 .00000 00197 .00 00 00 95 .00000 00346 .00 00 00 D5 .00000 00495
.00 00 00 16 .00000 00051 .00 00 00 56 .00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498
.000000 17 .00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 D7 .00000 00500
.00 00 00 18 .00000 00055 .00 00 00 58 .00000 00204 .00 00 00 98 .00000 00353 .00 00 00 D8 .00000 00502
.00 0000 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 00 00 D9 .00000 00505
.00 00 00 TA .00000 00060 .00 00 00 5A .00000 00209 .00 00 00 %A .00000 00358 .00 00 00 DA .00000 00507
.00 00 00 1B .00000 00062 .00 00 00 58 .00000 00211 .00 00 00 98B .00000 00350 .00 00 00 DB .00000 00509
.00 0000 iC .00000 00065 .00 00 00 5C .00000 00214 .00 00 00 9C .00000 00363 .00 00 00 DC .00000 00512
.000000 1D .00000 00067 .00 00 00 5D .00000 00216 .00 00 00 9D .00000 00365 .00 00 00 DD .00000 00514
.00 0000 'E .00000 00069 .00 00 00 5& .00000 00218 .00 00 00 9E .00000 00367 .00 00 00 DE .00000 00516
.00 00 00 1F .00000 00072 .00 00 00 5F .00000 00221 .00 00 00 9F .00000 00370 .00 00 00 DF .00000 00519
.00 00 00 20 .00000 00074 .00 00 0C 60 .00000 00223 .00 00 00 AO .00000 00372 .00 00 00 EO .00000 00521
.00 00 00 21! .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 00 00 E1 .00000 00523
.00 00 00 22 .00000 00079 .00 00 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 .00000 00526
.00 00 00 23 .00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 00528
.00 00 00 24 .00000 00083 .00 00 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530
.00 00 00 25 .00000 00086 .00 00 00 65 .00000 00235 .00 00 00 A5 .00000 00384 .00 00 00 E5 .00000 00533
.00 00 00 26 .00000 00088 .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535
.00 00 00 27 .00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537
.00 00 00 28 .00000 00093 .00 00 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 00540
.00 00 00 29 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542
.00 00 00 2A .00000 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 00395 .00 00 00 EA .00000 00544
.00 00 00 28 .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547
.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 00 EC .00000 00549
.00 00 00 2D .00000 00104 .00 00 00 6D .00000 00253 .00 00 00 AD .00000 00402 .00 00 00 ED .00000 00551
.00 00 00 2E .00000 00107 .00 00 00 6E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554
.00 00 00 2F .00000 00109 .00 00 00 6F .00000 00258 .00 00 00 AF .00000 00407 .00 00 00 EF .00000 00556
.00 00 00 30 .00000 00111 .00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558
.00 00 00 31 .00000 00114 .00 00 00 71 .00000 00263 .00 00 00 B1 .00000 00412 .00 00 00 F1 .00000 00561
.00 00 00 32 .00000 00116 .00 00 00 72 .00000 00265 .00 00 00 B2 .00000 00414 .00 00 00 F2 .00000 00563
.00 00 00 33 .00000 00118 .00 000073 .00000 00267 .00 00 00 83 .00000 00416 .00 00 00 F3 .00000 00565
.00 00 00 34 .00000 00121 .00 000074 .00000 00270 .00 00 00 B4 .00000 00419 .00 00 00 F4 .00000 00568
.00 00 00 35 .00000 00123 .00 00 00 75 .00000 00272 .00 00 00 B5 .00000 00421 .0C 00 00 F5 .00000 00570
.00 00 00 36 .00000 00125 .00 00 00 76 .00000 00274 .00 00 00 B6 .00000 00423 .00 00 00 F6 .00000 00572
.00 00 00 37 .00000 00128 .00 0000 77 .00000 00277 .00 00 00 87 .00000 00426 .00 00 00 F7 .00000 00575
.00 00 00 38 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 B8 .00000 00428 .00 00 00 F8 .00000 00577
.00 00 00 39 .00000 00132 .00 00 00 79 .00000 00281 .00 00 00 B9 .00000 00430 .00 00 00 F9 .00000 00579
.00 00 00 3A .00000 00135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .00000 00582
.00 00 00 3B .00000 00137 .00 00 00 78 .00000 00286 .00 00 00 BB .00000 00435 .00 00 00 FB .00000 00584
.00 00 00 3C .00000 00139 .00 00 00 7C .00000 00288 .00 00 00 8C .00000 00437 .00 00 00 FC .00000 00586
.00 00 00 3D .00000 00142 .00 00 00 7D .00000 00291 .00 00 00 BD .00000 00440 .00 00 00 FD .00000 00589
.00 00 00 3E .00000 00144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 00442 .00 00 00 FE .00000 00591
.G0 00 00 3F .00000 00146 .00 00 00 7F .00000 00295 .00 00 00 BF .00000 00444 .00 00 00 FF .00000 00593

Appendix A 117

1
2
4
9

118

TABLE OF POWERS OF TWO

1
2

4

8
16
32

65
131
262
524

1 048
2 097
4 194
8 388
777
554
108
217

435
870
741
483

N -
o
N

4 294
8 589
17
34

967
934
869
359 738

68
137
274
549

719
438
877
755

476
953
906
813

1 099
2199
4 398
8 796

51
023
046
093

627
255
5N
022

17
35
70

140

592
184
368
737

186
372
744
488

044
088
V77
355

28t
562
1125
2 251

474
949
899
799

710
421
842
685

976
953
906
813

4 503
9 007
18 014
36 028

599
199
398
797

627
254
509
018

370
740
481
963

72 057
144 115
288 230
576 460

594
188
376
752

037
075
151
303

927
855
71
423

152 921 504 606
305 843 009 213
611 686 018 427
223 372 036 854

846
693
387
775

Appendix A

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776
552
104
208

416
832
664
328

656
312
624
248

496
992
984
968

936
872
744
488

976
952
904
808

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62

63 -

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000

906 25
953 125
976 562 5
488 281 25

244 140 625

122 070 312 5
061 035 156 25
030 517 578 125

015 258
007 629
003 814
001 907

789 062
394 531
697 265
348 632

000 953
000 476
000 238
000 119

674
837
418
209

316
158
579
289

000 059
000 029
000 04
000 007

604
802
901
450

644
322
161
580

000 003
000 001
000 000
000 000

725
862
931
465

290
645
322
661

000 000
000 000

232
s
058
029

830
415
207
103

g8
&

g

014
007

551
275
637
818

g§88 8888 8888 888
§888 8888 3888 8888 8

8888 8888 8

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

215
957
978
989

494
747
373
686

843
421
210
105

000
000
000

5

25

125
562 5
781 25

390 625
695 312
847 656
923 828

461 914
230 957
615 478
307 739

653
826
913
456

869
934
467
733

228
614
807
403

366
183
o9
545

701
350
675
837

772
886
443
721

418
709
854
427

860
430
715
357

713 678

5
25
125

062
o031
515
257

628
8i4
407
703

851
425
712
856

928
464
232
616

808
404
202
601

800

356 839 400

178
089

044 604
022 302
511 151
755 575

877
938
469
734

787
893
446
723

867
433
216

361
680
840

419 700
209 850

925
462
231
615

807
203
951
475

737
868
434

5

25
625
812 5

906 25
453 125
226 562
613 281

806 640
903 320
951 660
475 830

237 915
118 957
059 478
029 739

014 869
007 434
003 717
001 858

500 929
250 464
125 232
062 616

031 308
515 654
257 827
628 913

814 456
907 228
953 614
976 807

988 403
994 201

5
25

625
3125
156 25
078 125

039
519
759
379

062
531
765
882

689
844
422
71

941
970
485
242

355 621
677 810
338 905
169 452

084 726
042 363
021 181
510 590

755
377
188
094

295
647
823
411

547 205
773 602

5

25
625
8125

406 25
703 125
351 562
675 781

337 890
668 945
334 472
667 236

333 618
166 809
583 404
791 702

395 851
697 925
848 962
924 481

962 240
981 120

497 100 886 801 490 560
000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

MATHEMATICAL CONSTANTS

Decimal Volue

Hexodecimal Volue

Constant
"
=
N
Inw
e
-1

e
N
Iogloe
Iogze
Y
InY
NZ
In2
log]02
NTO
in 10

5

25

625

3125

656 25

328 125

164 062 5

082 031 25

541 015 625

270 507 812 5

135 253 906 25
567 626 953 125
783 813 476 562 5

3.14159 26535 89793
0.31830 98861 83790
1.77245 38509 05516
1.14472 98858 49400
2.71828 18284 59045
0.36787 94411 71442
1.64872 12707 00128
0.43429 44819 03252
1.44269 50408 88963
0.57721 56649 01533
0.54953 93129 81645
1.41421 35623 73095
0.69314 71805 59945
0.30102 99956 63981
3.16227 76601 68379
2.30258 40929 94046

391 906 738 281 25

695 953 369 140 625
347 976 684 570 312 5
173 988 342 285 156 25

3.243F
0.517C
1.C58F
1.2500
2.B7E1
0.5£2D
1.A612
0.6F2D
1.7154
0.93C4
-0.8CAE
1.6A09
0.8172
0.4D10
3.2988
2.4D76

6AB9
cie7
891C
048F
5163
58D9
98E2
ECS5
7653
67E4
98C)
£668
1778
4D42
075C
3777

APPENDIX B. REFERENCE DIAGRAMS

This appendix contains flow diagrams that are intended to
illustrate the major operations involved during the execu-
tion of instructions by the SIGMA 6 computer. The flow
diagrams are not intended to depict actual computer oper-
ations and sequences, but the operations and sequences
shown are valid representations of the internal computer
operations. The symbolic notation used in the flow dja-
grams is consistent with that used in other portions of this
reference manual. The symbolic terms used are:

Term Meaning
A An internal CPU register used to hold an operand

obtained from the general register that is speci-
fied by the R field value in the instruction word.

AC Access control code — the code used to determine
whether or not a slave program operating with
the memory map may read from, access instruc-
tion from, or write into a specific page of virtual
addresses.

ADDR Address — any virtual address.

B An internal CPU register used to hold an operand
obtained from the yeneral register that is speci-
fied by the value produced by performing a logi-
cal OR between the R field of the instruction and
the value 1.

C An internal CPUregister used tohold an immed;ate
operand obtained from the instruction, or a byte,
halfword, or word operand obtained from the me-
mory (or general register) location specified by
the effective address of the instruction. For
doubleword operations, this register holds the 32
high-order bits of the effective doubleword.

D An internal CPU register used to hold the 32 low-
orderbits of the effective doubleword in a double-
word operation.

EB Effective byte.

EBL Effective byte location.

ED Effective doubleword

EDL Effective doubleword focation.
EH Effective halfword.

EHL Effective halfword location.
EW Effective word.

EWL Effective word location.

I Instruction register.

1A Instruction address.

IRA Indirect reference address.

MA Memory Address — an actual core memory address.
opP Operation code — bits 1-7 of an instruction word.
R General register address value.

TCC Trap condition code — the code that is used during
the EXCHANGE PROGRAM STATUS DOUBLE-
WORD (XPSD) instruction.

TYPE Memory access type — the following values are
used to indicate the reason for accessing memory:

0 = write
1 = instruction read
2 = operand read

WK Write key
WL Write lock

X Index register designator.

NOTES ON BASIC SIGMA 6 INSTRUCTION
' EXECUTION CYCLE

The hexagonal elements in the flow diagram labeled
"Memory Control" refer to the memory request process
shown at the right of the basic flow diagram. The memory
request process is represented as a subroutine with two inputs:
an address value (ADDR) and a memory access TYPE, sepa-
rated by a slash, that correspond to the values shown in the
"Memory Control" elements of the basic flow diagram.

The circular entry point labeled "TRAP" is a continuation
of the circular exit points labeled "Trap X'n'", where n is
the appropriate trap location.

The triangular entry point labeled "EXU" indicates the
point in the basic flow diagram at which an instruction
(being executed as an operand of the EXECUTE instruction)
is started.

The triangular entry point labeled "ANLZ" indicates the
point in the basic flow diagram at which the effective ad-
dress computation for the instruction being analyzed is
started; the triangular exit points indicate the completion
of the effective address calculation.

Appendix B 119

BASIC SIGMA 6 INSTRUCTION EXECUTION CYCLE

Int ¥ _o MA

no
UPDATE A-1—=1a 1A=MA?
‘ yes
.
¥ FEICHI Trop ma
WMA—T 5,
M
9
or n Trap
existent? §—1cC X'40'
yes
, or 5 no Trop
implemented? x40
yes
oP es yes Trap
privileged? D Slave mode ? 2—=TCC X'40"
no no
ANLZ
or yes ANLZ no -2 yes 8—=TCC
Immediate ? flag on? 0
o yes no
ANLZ
] . OP' no
word ?
yes
Y no
Iy 12 : C
12-31—C12-31
o ™ Coon
0—D
Memory
control
1RA/2
FETCH DA
(RA) s 37 sog A
120 Appendix B

A
yes X 02
no
or yes
byte? My5.33* O3 37 I 1535
no
or yes —
halfword ? Dhs22" N3 Nisezp l'_“’
no
op
o word ? yes
no op yes
shift?
Oys_31" Chsgi—=L1531] |Moaog* Khyog=—lpes,
Mhs_30* Mhe-31—=115 40
N y
ANLZ e e
flag on? 2
no
—-»|
Memory no
operand ? B
yes
Memory
control
h5352
op yes EB— Cp4 3
byte? 0 —Co3
00— D
no
orP EHSE—. >l
halfword ? yes 0~—eD
no
op yes EW——C
word ? 0eD
no
EDy51~ € B
B35~ O

BASIC SIGMA 6 INSTRUCTION EXECUTION CYCLE (cont.)

B
0 No. of 1
register R)—= A
operonds
2
R ®) —=A .
R even? — ®)—B
yes
R)—=A
R+1)—8
A
Execute
instruction
0 No. of 1
register (A)—=R
results?
2
(A)—R >
R even? e (B)— R+ 1
no
oP
MI, MW, DW, (A)—=R
r CVS?2 ne
yes
(®)—R

or
byte? yes

OP
halfword ? yes

opP
word ? yes

Ay g™ EBL

| ()5 EHL

(A)—= EWL

(A, B)— EDL

START

request process
ADDR/TYPE

Select corresponding
general register in
current register bank

Mapped ADDR —= MA ADDR — MA

Slave mode ?

1 —1CC

Is MA existent ? o 4 —=TCC
yes
RETURN
Trap
X'40'

Appendix B

121

FLOATING- POINT INSTRUCTION EXECUTION

FLOATING-POINT MULTIPLICATION AND DIVISION

Divide
by zero?

l

X'4' —= CC

Prenormalize numbers

Multiply or divide @

numbers

!

Postnormalize if multiply

Characteristic

overflow?

yes

0 —CCI)
I —=CC2

Characteristic yes

underflow?

1 —=CC1
| == CC2

0~ CCIl
0 —CC2

Result
positive?

0 — CC3
1 —=CC4

1 —=CC3
Result 0 —=CC4
positive?
Store result in A, B Store result in A, B 0 —=(CC3 [?
1 —CC3 0 —CC3 0 ~—CC4 X'ahr
0 —= CC4 ! —CC4 0 —=A,B
L 1
RETURN

122 Appendix B

FLOATING-POINT ADDITION AND SUBTRACTION

Right shift number with
smaller characteristic and
increment its character-
istic by 1 for each hex
place shifted until the
characteristics of the num-
bers are equal

b

Add or subtroct the
fractions

Right shift resultant frac-
tion 1 hex ploce and in-

fraction 2172

crement characteristic by 1

no Ch.

Characteristic yes

overflow ?

Result

X8’ — CC
0 — A,B

X'8 — CC

| .

underfiow?

Postnormalization yes
<required more than
2 hex shifts?

FS=1and

postnormalization

positive ?
4
X'6' —= CC X'5' —= CC
Traf
X'44

no
ne <nquirod more than
2 hex shifts?
Result N
zer0? X'Ct — cC
yes 00— AB
yes
3
0 — CCi 1—=CcQl 1 —CQ1
0 — CC2 0 —= CC2 0 — CC2
le |
Result no Result no
positive ? positive?
yes
y - "
% — CC Srof‘e:ixltclgs.k,s SQor; ts:l"_vzaA,l | — CC3 0 — CC3
0— AB 0 — CC4 1 — CC4 0 cc4 ’_’lcu
RETURN
Trap
X'44'

Appendix B

123

FLOATING-POINT SHIFY

Form the 2's comple-

X'g' == CC 0 — CC ment of the floating~
point number
]
4
RETURN
LEFT SHIFY RIGHT SHIFT
<hi
0 —ccl no count yes J o—ca
0 — CC2

{

0 —=ccz [V tive?
ol I

Shift fraction right | hex place,
fill vacated bit positions on the
feft with 0's, increment char-
acteristic field by 1, and incre-
ment shift count by one.

Shift fraction left 1 hex place,

fill vacated bit position on the)
right with 0's, decrement char~

acteristic field by 1, and dec- V —cC2

rement shift count by 1.

Form the 2's comple-
ment of the final
floating-point number

:

0 — CC3 1 —cC3
1 —= CC4 0 —= CC4 0 —cc

L J

Store result in A, B

Is number
normalized ?

Form the 2's comple-
ment of the final
floating -point number

0 —=cC3
| ~=CC4
1 —= CC3
0 — CC4
RETURN
Store result in A, B |

124 Appendix B

EDIT BYTE STRING INSTRUCTION EXECUTION

Fill - (R)°_7 a = byte buffer
SA = (R) B = byte buffer
13-31 & = digit buffer
D= (I)l2~3! ds = X'20°

yes - ss= X'21°
Q €= RNy, fs = x'22°
DA = (Ru1) si= X273

13-31

X'40* — (DA) >

Fill —= (DA)

' — (DA — Rl
X'FO u 3 (DA) DA — Rl

Fill —= (DA}

| — CC4 | — CC4
X'F0* u 38— (DA)
DA — Rlj3.31 DAY =Rz g
le v
1 — CCl
0— CC4
SA+] —= SA
1 —= cCl -
| —= CC4 SA+] SA
2 —cc2
le
DA+l —= DA
C-t — C JA-1 —= 1A

Appendix B 125

126

Mnemonic

AD
AH
Al
AlIO
AND
ANLZ
AW
AWM
BAL
BCR
BCS
BDR
BIR
CALI
CAL2
CAL3
CAL4
CB
CBS
CD
CH
Ci
CLM
CLR
CsS
CVA
CVsS
cw
DA
DC
DD
DH
DL
DM
DS
DSA
DST
Dw
EBS
EOR
EXU
FAL
FAS
FDL
FDS
FML
FMS
FSL
FSS
HIO
INT
LAD
LAH
LAW
LB
LCD
LCF

Appendix C

APPENDIX C. SIGMA 6 INSTRUCTIONS (MNEMONICS)

Code

10
50
20
6E
4B
44
30
66
6A
68
69
64
65
04
05
06
07
71
60
11
51
21
19
39
45
29
28
31
79
7D
7A
56
7E
7B
78
7C
7F
36
63
48
67
1D
3D
1E
3E
1F
3F
1C
3C
4F
6B
1B
5B
3B
72
1A

70

Instruction Name

Add Doubleword
Add Halfword
Add Immediate

Acknowledge 1/O Interrupt (privileged)

AND Word

Analyze

Add Word

Add Word to Memory
Branch and Link

Branch on Conditions Reset
Branch on Conditions Set
Branch on Decrementing Register
Branch on Incrementing Register
Call

Call 2

Call 3

Call 4

Compare Byte

Compare Byte String

Compare Doubleword

Compare Halfword

Compare Immediate

Compare with Limits in Memory
Compare with Limits in Register
Compare Selective

Convert by Addition

Convert by Subtraction
Compare Word

Decimal Add

Decimal Compare

Decimal Divide

Divide Halfword

Decimal Load

Decimal Multiply

Decimal Subtract

Decimal Shift Arithmetic
Decimal Store
Divide Word

Edit Byte String
Exclusive OR Word
Execute

Floating Add Long 3
Floating Add Short

Floating Divide Long
Floating Divide Short

Floating Multiply Long
Floating Multiply Short
Floating Subtract Long
Floating Subtract Short J
Halt Input/Output (privileged)

Interpret

Load Absolute Doubleword
Load Absolute Halfword

Load Absolute Word

Load Byte

Load Complement Doubleword

Load Conditions and Floating Control

¥ optional

Addressing Type

Doubleword
Halfword
Immediate, word
Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Byte
Immediate, byte
Doubleword
Halfword
Immediate, word
Doubleword
Word

Word

Word

Word

Word

Byte

Byte

Byte
Halfword
Byte

Byte

Byte

Byte

Byte

Word
Immediate, byte
Word

Word
Doubleword
Word
Doubleword
Word
Doubleword
Word
Doubleword
Word

Word

Word
Doubleword
Halfword
Word

Byte
Doubleword
Byte

Page

62

Mnemonic
LCFI

LCH
LCW
LD
LH

LI

LM
LPSD
LRP
LS
Lw
MBS
MH
MI
MMC
MSP
MTB
MTH
MTW
MW
OR
PACK
PLM
PLW
PSM
PSW
RD

S

SD
SF

SH
SIO
STB
STCF
STD
STH |
STM.
STS
STW
SwW
TBS
TDV
TIO
TTBS
UNPK
WAIT
WD
XPSD
Xw

Code

SIGMA 6 INSTRUCTIONS (MNEMONICS) (cont.)

Instruction Name

Load Conditions and Floating
Control Immediate

Load Complement Halfword

Load Complement Word

Load Doubleword

Load Halfword

Load Immediate

Load Multiple

Load Program Status Doubleword

Load Register Pointer

Load Selective

Load Word

Move Byte String

Multiply Halfword

Multiply Immediate

Move to Memory Control (privileged)

Modify Stack Pointer

Modify and Test Byte

Modify and Test Halfword

Modify and Test Word

Multiply Word

OR Word

Pack Decimal Digits

Pull Multiple

Pull Word

Push Multiple

Push Word

Read Direct (privileged)

Shift

Subtract Doubleword

Shift Floating

Subtract Halfword

Start Input/Output (privileged)

Store Byte

Store Conditions and Floating Control

Store Doubleword

Store Halfword

Store Multiple

Store Selective

Store Word

Subtract Word

Translate Byte String

Test Device

Test Input/Output]

Translate and Test Byte String

Unpack Decimal Digits

Wait

Write Direct

Exchange Program Status Doubleword

Exchange Word

privileged

] privileged

]pri vileged

Addressing Type

Immediate, word
Halfword

Word
Doubleword
Halfword
Immediate, word
Word
Doubleword
Word

Word

Word
Immediate, byte
Halfword
Immediate, word
Word
Doubleword
Byte

Halfword

Word

Word

Word

Byte

Word

Word

Word

Word .

Word

Word
Doubleword
Word

Halfword

Word

Byte

Byte
Doubleword
Halfword

Word

Word

Word

Word
Immediate, byte
Word

Word
Immediate, byte
Byte

Word

Word
Doubleword
Word

Appendix C

127

APPENDIX D. INSTRUCTION TIMING

This appendix shows the timing (in microseconds) for
executing individual SIGMA 6 computer instructions under
a variety of circumstances. All of the times are based on
the assumption that whenever the CPU requests a service
cycle from a particular memory bank, it never has to wait
for such service due to other devices (such as 10Ps) that
are connected to that memory bank.

Execution times depend not only on the nature of the specific
instructions, but also on the configuration of memory banks
in the system, and the placement of instructions and operands.
The following table provides a means of estimating instruction

execution times for some of the possible combinations of
memory bank configuration, datq placement, and instruc-
tion type, where

MAX = Time with no memory overlap (i.e., all se-
quential memory accesses come from the same

bank)

MIN = Time with complete memory overlap (i.e., all
sequential memory accesses come from a bank
not currently busy, that is, the bank being
accessed is not being used by the CPU or any
external 10P)

Average Instruction Execution Time

Memory Bank Configuration

Instructions that utilize

Instructions that utilize

All instructions and operands are in two inter~
leaved memory banks

All instructions and operands are in four inter—
leaved memory banks

All instructions are in one memory bank and all
operands are in two interleaved memory banks,

(Both operand memory banks are different from

instruction memory bank.)

byte, halfword, doubleword
and word addressing addressing
All instructions and operands are in the same
memory bank MAX MAX
All instructions are in one memory bank and all
operands are in a different memory bank MIN 1/2 MAX +1/2 MIN

1/2 MAX + 1/2 MIN 1/4 MAX + 3/4 MIN

1/4 MAX + 3/4 MIN . 1/8 MAX +7/8 MIN

MIN MIN

Basic timing information is summarized in the following two
tables. A dashentry forany item indicates a non-applicable
or impossible condition for the instruction. Special notes
(identified by numbers in the "Notes" column are given at
the end of the table to which they apply. Table D-1 shows
the execution times for instructions under the most common
conditions that the user can expect to encounter in his pro-
gram. Table D-2 shows the additional times that must be
added to the basic times if (1) the instruction performs a
register-to-register operation (i. e. ; accesses one or more
of the general registers for an operand(s) or a direct address)
or (2) the register pointer in the current program status
doubleword selects one of the register blocks in the range
from X'4' through X'1F' (4 through 31 decimal),

The times given in Table D=2, where the instruction per-
forms a register-to-register operation, assume the following
conditions.

1. The CPU is operating in the mapping mode with one
memory bank so that no memory overlap occurs,

2. All instructions are in core memory.

128 Appendix D

3. In the case of an instruction with a direct address, its
operand is in one or more of the general registers. For
a push~down instruction with a djrect address, however,
its stack pointer doubleword is in the general registers
and the stack is in core memory.

4. In the case of an instruction with an indirect address,
the indirect reference is to one of the general registers,
which contains the direct address of the operand. The
resultant virtual address is assumed to be a core memory
address. For a push-down instruction with an indirect
address, therefore, both the stack pointer doubleword
and the stack are assumed to be in core memory,

The timing data given below are for a typical system, A
specific CPU may vary by up to £10% of the times shown,

For large core memory configurations, an additional . 1 psec
per memory access may be encountered due to added cable
lengths.

Table D-1. Basic Instruction Timing

No Memory Overlap Maximum Memory Overlas
No Map Map No Map Mop
Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect
No No No No No No No No
Index Index Index Index Index Index Index Index Index Index Index Index Index Index Index Index
AD 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8
AH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9
_A]*—__- T 1.3 V”-- ’_' —‘- N |4 -- ﬂ_TV -- 1.3 -- -- - - 1.4 "_"_"" ‘:A- -~
AIO R#0 69 V 6. 9” o ;ti o 7."5 6.9 6.9 ;5 ;.5) 6.:_ 6‘. 6" o >7—4 2’” 7.2 76’.7;_“~ 6.7 o 7};“7*7 7.3
AIO R=0 6.1 6.t 6.7 6.7 6.1 6.1 6.7 6.7 6.1 6.1 6.7 6.7 6.1 6.1 6.7 6.7
AND 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9
ANLZ 1 o 7‘3_3 3.9‘ 4.3 4.6 3.3 4. 4.3 4.7 3.2 3.8 4. ;; 3.2 ;7 N 4.7 4.5
AW o 2.0 ’ 2.6 29 3.2 2.0 27 o '2~9 o 7773:377 7 T;A‘) 50 V 23 2.6 1.5 2.2 2.4 2.9 N
AWM 3.0 3.6 3.9 ;—2‘ 3.1 3.8 4.0 4.4 2.6 3.3 3.6 3.’9_ ----- 2.9 3.6 “3.8 4.2
BAL 2.3 2.3 2.9 2.9 2.4 2.4 3.0 3.0 2.2 2.2 2.8 2.8 2.3 2.3 2.9 2.9
BCR br;:;; 1.0 1é 2.0 V 2.3 1.0 1.7 2.0 24 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3]
BCR no branch 2.0 2.6 3.0 3.3 2.1 2.8 3. 3.5 1.9 2.5 2.8 3 2.0 2.7 2.9 3.3
BCS branch 1.0 1.6 2.0 2.3 1.0 1.7 2.0 2.4 0.9 1.5 1.8 2.2 0.9 1.6 1.8 2.3
BCS no branch’ 2.0 2.6 3.0 3.3 2.1 2.8 3.1 3.5 1.9 2.5 2.8 3.1 2.0 2.7 2.9 3.3
80R branch 1.4 1.7 2.4 2.4 1.4 1.8 2.4 2.5 1.4 1.7 2.3 2.3 1.4 1.8 2.3 2.4
BDR no branch 2.4 2.7 3.4 3.4 2.5 2.9 3.5 3.6 2.3 2.6 3.2 3.2 2.4 2.8 3.4 1 3.4
8IR branch 1.4 1.7 2.4 2.4 1.4 1.8 2.4 | 2.5 1.4 1.7 2.3 2.3 1.4 1.8 2.3 2.4
BIR no branch 2.4 2.7 3.4 3.4 2.5 2.9 3.5 3.6 2.3 | 2.6 3.2 3.2 2.4 28 3.4 3.4
CAL 1-4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
@] 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 1.5 2.2 2.4 2.9
ces 2 0;;N T o o AN | 7T T T +;:;N o o o MAN |7 o T
(@) 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8
CH 2.0 2.6 2.9 3.2 - 2.0 2.7 2.9 3.3 1.4 2,0 2.3 2.6 1.5 2.2 2.4 2.9
Cl 1.9 - -- -~ 2.0 -- -- -- 1.8 -- - -- 1.9 -- -- --
CI;A—“&> - ————V_‘é..‘?__‘ 773’,6 o 397 T 4.7;“ 2.9 3.7””“;.’9 4.3 2.4 3.0 3.3 I 3.6 2.5 3.2 3.4 3.8
CLR 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.8 3. 1.8 2.6 2.8 3.2
Cs 3.0 3.6 4.0 4.3 3.1 3.8 4.1 4.5 2.9 3.5 3.8 4.1 3.0 3.7 3.9 4.3
TVAM“‘_—__:" —IVZ lm 17.1 N 17.6 17.6 171 17.1 17.8 17.8 17.1 17,1 17.3 7>|7.3 17.2 17.2 17.3 17.3
+0. 6N +0.6N +0.6N +0.6N +0. 7N +0.7N +0.7N +0.7N +0. 5N +0.5N +0.6N +0.6N +0. 6N +0.6N +0.7N +0.7N
CVvs R 34.7 34.7 35._2 35.2 38.4 38.4 7 7‘3‘8.‘5 38.5 33.2 33.2 33.7 1 33.7 36.8 36.6 36.7 36.7
—ZN‘“ T _5:707“_“) ;6 2.9 3.2 2 0‘“““2”77 a ‘-2_9 3.3 1 ; 2.0 2.3 2.6 1.5 2.2 2.4 2.9
DA 4 19.2 19.2 20.0 20.0 19.4 19.4 2.6 20.6 19.2 19.2 2.0 20.0 19.4 19.4 2.6 20.6
+0.3D +0.3D +0.3D +0.3D0 +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D0 +0.3D +0.30 +0.3D
e] ; o 1.8 Ai;l.e 12.3 »lg.;”“ .i‘2_.nl.“ _TZTIV_ 12.8 12.8 1.8 1.8 12.3 12.3 12.1 12.1 12.8 12.8
+0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D0 +0.3D +0.3D +0.3D +0, 3D +0. 3D +0.3D +0.30 +0.3D
) 5 T 29.7 2.7 30.3 30.3 30.8 30.8 31.4 3.4 29.7 29.7 30.3 30.3 30.8 30.8 31.4 31.4
+0. 8K +0.8K +0.8K +0.8K +0. 8K +0. 8K +0. 8K +0.8K +0.8K +0.8K +0.8K +0.8K +0. 8K +0.8K +0.8K +0.8K
_MIJ--I‘ln 12.4]3.0“-1‘73:4”7) 13.7 N ‘12,4 1—3‘2) 13.4 7;3-‘-37~m>|2.4 13.0 13.3 13.6 12.4 131 13.3 13.7
bL o ;ﬁ - 1.8 1.8 -|>2:; “_IZQ 11.8 ";; llg 12.5-”.-;}.8 1.8 12.4 12.4 1n.s 1.8 12.5 12.5
+0.3D +0.3D +0.3D +0.3D | +0.3D +0.3D0 +0.30 | +0.3D |} +0.3D0 |+0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D
DM 6 61.2 6;.2 61.8 61.8 62.3 62.3 6’;‘9‘m—<_6_2*.;"— 61.2 61.2 6.8 61.8 62.3 62.3 62.9 62.9
+0.4DN | +0.4DN +0.4DN | +0.4DN| +0.4DN | +0.4DN +0.4DN/| +0.4DN +0.4DN | +0.4DN +0.4DN | +0.4DN | +0.4DN | +0.4DN +0, 4DN | +0.4DN
DS‘ o ; 19.2 ;;2 19.7 19.7 19.3 19.3 19.7 19.7 19.2 19.2 19.7 19.7 19.3 19.3 19.7 19.7
+0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D +0.3D
D3A B 20.3 772_0.—3 20.9 20.3 20.3 i _‘_Z-I_‘AO" 21.0 20.2 2.2 2.6 20.6 20.2 20.2 20.9 20.9
B D;T 7) "'l'.';"_”;:;'—-";.o] “ﬁ:(')'”‘_n,a 11.3 12,1 12.1 1n.3 1.3 h 12.0 12.0 1.3 1.3 12.1 12.1]
+0.7D +0.7D +0.7D +0.7D +0.7D +0.7D +0.70 +0.7D +0.7D +0.7D +0.7D +0.7D +0.7D +0.7D +0.7D +0.7D

Appendix D 129

Table D-1. Basic Instruction Timing (cont.)

i No Memory Overlap Maximum Memory Overlap
i’ No Map Map No Map Map
Maemonics] Notes | 'ofre'c}mh_[w indirect Direct Indirect Direct Indirect | Direct Indirect
! No | T Re Iu“ No No] ’T\Ao"[w‘—'ﬁ_ﬁ L B
i R Rl Index | Index | Index | Index Index | Index | Index Index | Index | Index | | Index | Index
oW i 26 32 s 13.8 12.5 13.2 136 13.9 12.5 B3| 13.4 13.6 125 | 13.2
R | S S S S RS N M SN IR SRS BRSNSy ,_ |
e85 8 4:::3N T o 0T 0;:12N o o o *2:;N o o oT 7N o o o
EOR ﬁ_,,..,_,_v___,],';_,,,,;;_-,,_,2,.,7,,,,*_3; _.,.;.,;‘--_;,,7_2‘7_ BT BV 20 | 23 + 2.6 s | 22 2.4 2.9
eu e 1 e | 22 | 22 13 | 1e |22 2.4 1.2) 2.1 2.2 1.3 e | 22 2.4
ALmin |10 41 | 47 50 | 53 42 ‘47_';7—:7:};17 A_' 5.5 v | a7 Ws._gm 53 4z |49 | s 5.5
FALmox |11 s w2 s | as 13.8 14.4 47 | sa 13.7 142 | 1486 14.8 13.8 hu 4.7 159
[FAUypical 12 50 | 55 [se | er | sy 57 160 | 64 |30 5.5 5.9 6.1 5.1 57 | 60 | o4
 FAsmin | 10 133 39 | 42 4.6 3.3 4.0 42 47 33 | 39 42 46 3.3 40 4.2 47
[FaSmex |11 8.2 89 | 91 | 9s 8.2 9.0 9.1 9.6 8.2 8.9 91 | o5
| FAS typicol J 2 Jao | e —#4}_» 53 [40 [47 4 |54 o T oo T 5.3
oumin 1306 |54 200 |24 Tas] 55 |20 (270 | s |24 |21 | 26s 2.7
| FoL max : o Jsar Tasa Jaso * 360 |ass |54 369 31 |3a7 |34 | sy 36.0
[eosmin [fze s Tna Tro o e [ed (e 2 s Tes T
FDS max ‘ﬁ}‘ii_h 16.6 17.5 7.6 1179 |66 |17 176 |so s |15 76 | a7s [6.6 17.6 176 180
ML min B o1 | es 100 | 104 | 9.2 |00 10.2 | 0.6 9.1 9.8 {100 10.4 92 [100 |102 lioe
[Mlme |11 a7 [se Jse 1o [14s |56 |1ss 16.2 47 154 | 156 | 160 14.8 5.6 (158|162 |
[s min e Jso 6.6 6.9 7.2 6.0 6.8 6.9 7.4 6.0 6.6 6.9 7.2 6.0 6.8 69 | 7.4
T FTR o4 97 |00 8.8 96 | 27 | 0.2 8.8 9.4 9.7 | 10.0 8.8 9.6 9.7 102
Fstmin |10 1| 4z 5.0 5.3 42 4.9 5.1 5.5 41 47 5.0 5.3 4.2 4.9 5.1 5.5
FSLmax | 11 137 | 142 e | 148 13.8 (144|147 |51 3.7 42 | 146 | 148 138 | 164 1.7 |51
FSLtypical | 12 5.0 5.5 5.9 61 | s 5.7 6.0 6.4 5.0 5.5 5.9 6.1 5.1 5.7 6.0 6.4
[ESS min o 3.3 3.9 42 4.6 3.3 4.0 4.2 47 3.3 3.9 4.2 46 3.3 4.0 42 47
FSSmax | 11 8.2 8.9 9.1 9.5 8.2 2.0 9.1 9.6 8.2 8.9 9.1 9.5 | 82 9.0 9.1 9.6
FSS typical | 12 0 | 456 49 5.3 4.0 4.7 4.9 5.4 4.0 4.6 4.9 5.3 4.0 4“7 4.9 5.4
o R=even 0|97 | 5.7 |03 0.3 9.7 9.7 |10.3 |03 9.4 94 [100] 00 9.5 | 95 10.1 10.1
[Wo | R-oud Ts3 83 |as | a9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9 8.3 8.3 8.9 8.9
HIO R-0 TR 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7
INT 2.4 3.0 3.4 3.6 2.5 3.2 3.4 3.8 2.3 2.9 3.2 3.5 2.4 3.1 3.3 3.7
LAD 1 3.4 40 4.3 4.6 3.4 4.2 4.4 48 3.1 3.7 40 4.3 3.2 3.9 4.2 4.6
LAH T 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1
S — |
LAW ! 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3
L8 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 31
[T 29 | 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8
LCF N Y 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1
LCFI 1.3 -- -- -- 1.4 -- -- -- 1.3 -- -- -- 1.4 -- -- --
LCH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.1
Lew 2o 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 31
LD 2.9 3.6 3.9 4.2 2.9 3.7 3.9 43 2.4 3.0 3.3 3.6 2.5 3.2 3.4 38
]
LH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3
u L 1.3 -- -- -- 1.4 -- -- -- 1.3 -- -- -- 1.4 -- -- --
" s 2 3.0 .2 2
FLON [HLON 410N [41N JSLIN [SIN (1IN | +LIN 410N | <1 0N | o1 oN HLON JHN [+1N | +TIN [sTN
LPSD 4.4 4“4 5.0 5.0 4.7 4.7 5.2 5.2 44 44 5.0 5.0 4.7 47 5.2 5.2
w] 2.2 2.8 31 3.4 2.3 3.0 3.2 3.6 2.2 2.8 3.1 3.4 2.3 3.0 3.2 3.6

130 Appendix D

Table

D-1.

Basic Instruction Timing (cont.)

No Memory Overlap

Maximum Memory Overisp

No Map Map No Map Map
Mnemonics Notes Direct Indirect Direct Indirect Direct Indirect Direct indirect
No No No No No No No I No
Index Index Index Index Index Index Index Index Index Index Index Index Index Index Index Index
Ls 2.5 3 3.4 3.7 2.6 33 3.5 3.9 2.5 3.1 3.4 |37 2.6 3.3 3.5 3.9
LW 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 1.5 2.2 2.4 3.0
4.2 . . 4.4 . . 4.2 44 . . .
MBS word 2 08N | T +0.8N “ Jsoen | T -- SR PP
4.2 4.3 42 4.3
MBS byte |2 434N o o °C +3.4N - o - +3.4N - - o 434N | 7T 0T e
MH 3.8 4.4 4.8 5.1 3.9 4.7 4.9 5.3 3.8 4.4 4.8 5.1 3.9 4.7 4.9 5.3
MI 5.0 -- -- N .- R 5.0 -- I D CE S - -
3.0 o7 | 3.0 T 30
MMC 15 +3. 0N T - - T 431N T - TT +2.9N T o T o +3.0N - - T T
MSP 7.6 8.2 8.5 8.8 8.0 8.7 8.9 9.3 7.4 8.0 8.3 8.6 8.0 8.7 8.9 9.3
MTB R#0 3.6 4.2 4.6 4.9 3.7 44 47 5.1 36 4.2 4.6 4.9 3.7 4.4 47 5
1
MTB R=0 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 2.6 3.2 3.6 3.9 2.7 3.5 37 40
MTH RAO 3.6 4.2 4.6 4.9 3.7 4.4 4.7 5.1 3.6 4.2 4.6 4.9 3.7 4 4.7 5.1
MTH R=0 2.6 3.2 3.6 3.9 2.7 3.5 3.7 4.1 2.6 3.2 3.6 3.9 27 135 3.7 4.1
R N RURSR SRR DGR SRS SR R : ’
MTW R#O 2.8 3.4 3.7 4.9 3.9 3.6 3.8 4.2 2.6 3.3 3.6 3.9 39 .36 | 38 4.2
MTW R=0 2.3 2.9 3.2 3.6 2.4 3.1 3.4 3.8 2.3 2.9 3.2 3.6 2.4 E 3.1 . 3.4 3.8
MW 5.0 "6 5.9 6.2 5.1 5.8 6.0 6.5 5.0 5.6 5.9 6.2 5.1 [58 | 6.0 . 6.5
OR 1.8 2.4 2.7 3.0 1.8 2.5 2.7 3.2 1.4 2.0 2.3 2.6 5 |22 1 24 2.8
RS —— | +
PACK 16 12.0 12.0 12.6 12.6 12.0 12.0 12,8 12.8 12.0 12.0 12,6 12.6 12.0 f 120 128 12.8
40.6N 06N | H0.6N | H0.6N | H0.6N | +0.6N | 40.6N | +0.6N [40.6N | +0.6N | +0.6N 06N | +0.6N [+0.8N 06N | +0.6N
- - f '
LM 15 10.0 10.0 10.8 10.8 10.5 10.5 m1 na 9.5 9.5 10.0 10.0 0.2 i10.2 10,7 10.7
SLON. 141ON [410N [+1.ON | +1LIN | +LIN [4LIN [+1ON] 410N | +1.ON | +1.ON [41.ON [+1.ON +1.ON =LIN | +LIN
it i
PLW 10.8 10.8 .4 1.4 n.2 1.2 1.8 1.8 10.2 10.2 10.8 10.8 0.8 108 114 T
- 15 .7 8.7 .4 4 9.0 9.0 9. 8.3 8.3 9.0 9.0 .6 6 | 96 9.6
+1LON {+1.ON | +EON | +1.ON | +LON | +1.ON | +1.ON |+1L.ON | +0.8N | +0.8N | +0.8N [+0.8N [+1.ON !+41.ON +1.ON | +I.0N
PSW 9.8 9.8 10.5 10.5 10.2 10.2 10.9 10.9 9.3 9.3 9.8 9.8 9.8 9.9 110.5 10.5
RD internal 2.5 2.5 3 3.1 2.5 2.5 3.1 kR 2.5 2.5 3.1 31 2.5 2.5 I 3.1 L3
f 1
. external 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 3.4 3.4 2.8 2.8 | 34 | 3.4
17 0. 4N 104N 1 04N [H0.4N | 04N | 104N | S0.4N | 404N | HOAN | 404N | +0.4N | H0.4N [+0.AN | s0AN | 04N 1 +0.4N
S left 18 2.1 1 2,7 2.7 2.2 2.2 2.8 2.8 2.1 2.1 2.7 2.7 21§ 21 ' 27 | 27
(O IN 140U TN [0 IN [w0 1N [0 IN [+0.IN | 0. TN | W0 IN J +0.IN 1 +0.IN | <0.IN |+0.IN |« IN [+W.IN +0.IN | +0.IN
S right 18 2.1 2.1 2.8 2.8 2.2 2.2 2.9 2.9 2.1 2.1 2.8 2.8 22 | 2.2 2.9 2.9
+0.2N {+0.2N | +0.2N i +2.2N J40.2N [02N [402N [+0.2N | 402N | 402N | 02N [«0.2N |+0.2N 102N | 402N T s0.2N
—f SRR R P S -
sD 2.9 3.6 3.9 4.2 2.9 3.7 3.9 4.3 2.4 3.0 3.3 3.6 2.5 3.2 3.4 3.8
SF lefr single .6 2.6 3.2 3.2 2.7 2.7 3.3 3.3 2.6 2.6 3.2 3.2 2.7 2.7 3.3 3.3
€ 19 +0.2N |40.2N [+0.2N | +0.2N | +0.2N 1 +0.2N | +0.2N [+0.2N | +0.2N | +0.2N | «0.2N [+0.2N [+0.2N l+0.2N 02N | +0.2N
SF right single 2.4 2.4 3.0 3.9 2.6 2.6 3.2 3.2 2.4 2.4 3.0 3.0 2.6 2.6 3.2 3.2
! 19 +0. 6N 1+0.6N [0.6N | +0.6N | +0.6N | +0.6N | +0.6N [+40.6N | +0.6N | +0.6N | +0.6N | +0.6N] +0.6N 140.6N | :0.6N +0.6N
SF left double 4.0 4.0 4.6 4.6 4.1 4.1 4.7 4.7 4.0 4.0 4.6 4.6 4.1 4.1 47 47
19 +0.2N |+0.2N [+0.2N [+0.2N | +0.2N i +0.2N | 402N [+0.2N | +0.2N | 402N | €0.2N [+0.2N [+0.2N (402N [+0.2N | +0.2N
. IR - —_ e
SF right double 3.8 3.8 4.4 4.4 3.9 3.9 4.6 4.6 3.8 3.8 4.4 4.4 3.9 3.9 4.6 4.6
19 +0.6N [+0.6N | +0.6N | +0.6N | +0.6N | <0.6N | +0.6N [+0.6N | +0.6N | +0.6N | +0.6N 1 +0.6N [+0.6N | +0.6N | +0.6N | +0.6N
SH 2.0 2.6 2.9 3.2 2.0 2.7 2.9 3.3 1.4 2.0 2.3 2.6 L5 2.2 2.4 2.8
s10 R = even, #0 {10.6 10.6 n.2 11.2 10.6 10.6 i.2 1.2 10.3 10.3 10.9 10.9 10.4 10.4 1.0 1.0
510 R = odd 9.5 9.5 10.1 10.1 9.5 9.5 10.1 10.1 9.5 9.5 10.1 10.1 9.5 9.5 10.1 I 10.1
Hle] R=0 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 ! 7.7
. [A SN SRS S
ST8B 3.0 3.0 3.6 3.6 3.1 3.1 3.7 3.7 2.9 2.9 3.5 3.5 3.0 3.1 3.6 3.7
STCF 20 |30 | 36 3.6 a 3 3.7 3.7 2.9 2.9 3.5 s 3.0 3.1 3.6 37
STD 3.6 3.8 4.2 4.2 3.7 3.7 4.3 4.3 3.2 3.2 3.3 3.7 3.5 3.5 3.3 3.9

Appendix D

131

Table D-1. Basic Instruction Timing (cont.)

<

No Memory Overlap Maximum Memory Overiap
Ne Map Map No Map Map
Maeronics | Notes Direct Indirect Direct Indirect Direct Indirect Direct Indirect |
No | No | No No No No No No |
Index Inde x Index Index Index Index Index Index Index Index Index Index Index Index Index Index
STH 3.0 3.0 3.6 36 3 X 3.7 3.7 2.8 2.8 3.5 39 3.0) 3.6 40
Corn s 2 21 28 28 22 | 22 X] 21 21 28 | 28 2.2 22 22 22
‘ SLON {UTON JHTON [4ION HLON [LON [SLON 10N f0l8N | 08N | 108N | 08N | 0 on | woon | 2 09N
st 37 | 43 47 5.0 38 | 45 48 5.2 3.5 4.0 a4 | 46 3.6 43 45 14
STw 26 | 2 3.2 3.2 27 |27 | a3 3.3 2.3 23 29 | 29 2.6 27 a2 3
sw 2.0 2.6 29 | 32 20 |27 |29 | 33 1.4 20 | 23 2.6 1.5 2.2 24 130
) 3.0 3.2 3.0 3.2 '
185 2 IV N - B RN B - o N | T T - AN T T i
! ,
DV R=even, A | 9.7 9.7 10.3 10.3 9.7 9.7 10.3 10.3 9.4 9.4 10.0 10.0 9.5 9.5 l 10.1 10.1
TDV R - odd 83 | 83 89 | 89 8.3 83 | 89 8.9 8.3 8.3 89 | 8.9 83 a3 ey ey
I i
TOV R=0 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 ’ 7.1 ; 7.7 7.7
TIo R=ewen A [97 |97 [103 | 103 5.7 {97 w3 |03 9.4 | 94 1100 100 9.5 9.5 | 101 101
o R = odd 8.3 8.3 89 | 89 |83 8.3 89 | 89 8.3 8.3 89 |89 | a3 8.3 89 |89
TiOo R:B 7.1 .-“‘_*7.] 7.7 7.7 7.1 7.1 7.7 7.7 7.1 7.1 7.7 7.7 7.1 i 7.1 i 7.7 . 7.7
A N EY R 3.2 3.2 32 | i :
TT8s z 43N | T - T leaeNn | T - B PV B - I RN R T
:
UNPK .21 b LS TN Pz e e s zs [fine 2o Jize e e | rae 2.2
. TN JUTIN TN T AN LN LN AN N LN LN | aN | N TN | l’ SLAN elan
WAIT 21 9 1.9 26 | 26 1.9 e |27 | 27 1.8 1.8 2.4 2.4 1.9 19 25 | 25
wo internal 25 25 | 3 31 2.5 2.5 31 31 2.5 25 31 3.1 25 25 | 31 3
I
Wb external 2.8 2.8 34 | 3.4 2.8 28 |34 | 34 2.8 2.8 34 | 3.4 2.8 28 | 34 |34
17 AN [POAN [COAN | 04N (04N 104N |0 4N | 0N 0N 204N | 04N | a0 aN | oan | e | e AN [0laN
XPSD ho-o 65 | 65 7.1 7.1 65 | 65 71 7.1 6.1 6.1 66 | 66 |en 6.1 67 |67
XPSD ho-1 65 | 65 7.1 7.0 67 | 67 7.3 7.3 6.1 61 66 |66 [65 | 65 7.1 7
xw 30 | 36 39 | 42 [an 38 |40 | 44 26 133 136 |39 129 |36 | ag |42
Notes: 1. Add 0.6 if analyzed instruction is indirect. Subtract 0.3 if it is LCFI, Al, LI, CBS, MBS, or EBS.
2. N = number of destination bytes processed.
3. N = number of 1's in the word converted.
4. D = number of digits (including the sign) in the effective decimal operand.
5. K =(D+6)(16 - Q); D = same as note 4; Q = number of leading zeros in the quotient.
6. D = same as note 4; N = number of nonzero decimal digits in the decimal accumulator.
7. D = number of digits (including the sign) to be stored.
8. N = number of bytes in the editing pattern.
9. Add execution time for subject instruction.
10. No pre-alignment or post-normalization required.
1. Un-normalized operands.
12. One hexadecimal pre-alignment and one hexadecimal post-normalization.
13. Nonzero, normalized operands.
14. Minimum time is also typical time.
15. N = number of words moved.
16. N = number of bytes in zoned number in memory.
17. N = integer (0, 1, 2,...), dependent on delay in external device.
18. N = number of bit positions shifted.
19. N = number of hexadecimal positions shifted.
20. N = number of bytes to be stored in memory.
21. Minimum time.
132 Appendix D

Table D-2. Additional Instruction Timing
(Add to times in Table D-1)

Register-to-register Operations

Register pointer selects

Register-to-register Operations

Register pointer selects

register block X'4' - X'IF* register block X'4' - X1F*
Mnemonic Direct Indirect Direct Indirect Mnemonic Direct Indirect Direct Indirect
otes In':‘e’x Index lnNd:x Index Hotes h::x Index h::x Index Notes ln';"e’x Index lr::x Index Rores lr::x Index h::x Index
AD 22 |14)12 |12 22 05103 | 09 | o6 FAL 23 [16 15| s 0.4 [03| 08 | 06
AD S I 23 05| 04| 10 |07 FAS 15 o8| 15] 15 04 | 03| 08 |06
AH 12 [os |12 |13 04|03 | 08 |os FDL 23 | 16| 15] 1 04 [03] 08 |06
Al I R R 01 | -- | = | -- FDS 15 | 08| 151 1.5 04 | 03| 08 |06
AIO 0 o {15 |15 06] 06 | 09 |09 FML 23 | 16| 15| s 04 | 03| 08 |06
AND 12 |os]| 12 |13 04)03 | 08 |06 FMs 15 | o8| 15] 15 0.4 | 03| 08 |o0s
ANLZ va los 13 |13 05 |07] 16 | 1.3 Fst 23 | 16| 15| 15 0.4 | 03] 08 | o6
Aw 12 los |12 |13 04103 | o8 | o6 FSS 15 (o8| 15| 1s 0.6 | 03| 08 | 06
AWM 22 | 16113 |13 04 | 03] 08 |06 HIO 0 o | 15| s 0.6 | 06 | 09 | o9
BAL 07 | 07|14 | 14 04| 04| 07 |07 INT 14 o7] 14 14 0.4 1 03| 08 | 06
BCR fbranch | 13 | 07 [13 | 1.4 03| 03] 07 |oe LAD 23 [15| 13 13 04 | 03| o8 | o6
BCR fnobianch| 21 | 19 | 1.3 | 1.3 N B . . LAH 12 | os | 13} 1.4 0.4 | 03| 08 |06
8CS fbranch | 1.3 1 07 | 13 | 1.4 03|03 | 07 |06 LAW 12 |05 13] 14 04 031 08 |06
BCS robranch| 25 | 1.9] 1.3 | 1.3 [P N L8 12 o5 | 13] 1.4 0.4 | 03| 08 |06
BDR banch | 1.4 1 09 | 1.4 | 1.4 031 03| 07 |o0s LCD 22 |14 [2] 1.2 04 | 03] o8 |06
CBOR frobeonch] 24 | 21 | 12 | 15 NN O I LCF 12 | o5 13] 14 0.4 | 03] 08 |06
BIR branch | 1.4 {09) 14 | 14 03 03| 07 | o6 LCFI E R . R I A N
BIR nobranch| 2.4 | 2.1 | 1.2 | 13 S R R LCH 12 o5 | 13] 1.4 04 | 03| 08 | o6
1C,A2L'3,4 0 0 | 14 | 14 04 04 | 07 |07 Lew 12 05 13 14 0.4 | 03| o8 | o6
cs 13 o6 |13 |13 04| 03] 08 |06 LD 22 [taf12] 12 0.4 | 03| o8 | 06
cas fos 0N -- oo | - 06 | - | -] -- LH 12 {os5] 13} 14 04 ;03| o8 |os
co 22 |14 |12 |2 0.4] 03 | 08 |06 L N I e o1 | -- | - | --
cH 13 06| 13 | 1.2 04|03 | 08 |06 LM 08N|oBn| 13| 13 04 | 04| 07 oy
c S O - 04 - f -} .o LPSD 18| 18] 15 15 04 03] 08 |06
cLm 15 112] 12 |2 04103 | o8 | 06 LRP 15007) 151 15 c4a !l oaf 07 | o7
CIR 13 {07 14 |14 04| 03| o8 | 0s Ls 15] 08 1.5] 1.5 05| 04] 1.0 | o7
cs 14 o713 |3 0.4 03] 0806 Lw 4oz | 1s| 1s 0.4 | 03] o8 | o7
cva |0 T 04|04 | 07 |07 mes |27 02N| - - | - -- 06 | -- | - [--
cvs [0 e - 14 |14 04 | 04| 07 | o7 mes | 2a 03N --| - | -- I D R
cw 13 | os| 13 |13 041 03] 08|06 MH 15108 1.5] 1.5 04] 03| 08 | os
DA 010 [oap| 15 |15 04| 04 | o7 | 07 MI S I 04 | - -2 | --
oC o0 foap| 15 |15 04| 04 | 07 | 07 MMC 08N| -- | --| -- 06 | 05 09 | o9
DD 35 | 35] 15 | 15 041 04| 07 |07 MsP 35| 35] 15] 1.5 04| 04| 07 | 07
DH 15 |07 14 | 14 04| 03| 08 | 06 mre | R 20 | 14| s s 0.4] 03] 08 | 06
DL oo {oip| 15 | s 04 fo4] o7 | o7 mre | r= 15 o8l 15} 15 S I e
DM a5 | 3515 | s 04| ca o7 | o7 MTH | R0 20] 14] 15 1s 0.4] 03 08 | 06
DS 010 {0.1D| 1.5 | 15 04| 04| 07 | 07 MTH | r=0 15] 08| 15] 1.5 S I I .
DSA 0 0| 14 | 14 04| 04| 07 |07 MIw | R#0 2417 s 1s 04| 03| 08| 06
DST 030 {0.3D| 15 | 15 04| 04| 07 | 0 Mrw | R= 15| o8l 15] 15 SO A B
DW 15] 081 14 | 1.4 04 03| 08 06 Mw 15 08] 15| 1.5 o4] 03] 08| 0s
£8S 25 04N] -- | --] -- 03 - -- | -- orR 14| 07| 15] 15 04| 03] 08! 0e
EOR 14 | o7 14 | s 04] 03] 08 | 06 PACK o2Nf 02N 15| 15 04| 04 o7 | o7
exu |2 15 07| 15 |15 26 04] 03| o8 {06 PLM 3.2 32| 11| m 04| 04| 07 | 07
Appendix D 133

Table D-2. Additicnal Instruction Timing (cont.)

(Add to times in Table D-1)

Register-1o-reg ster Operations f:;z:r;‘in:e;f;’ic;:,]p Register-to-register Operations f:;i;:r;;icnl:e)r(&e‘le_c;lp
Mremonie ~ T Tniveer Indirect Direct Indirect Mnemonic Divect Indirect Direct Indirect
L o :‘“(Index ln’;‘:x Index ores ln:":x Index [n':‘e" Index rotes h::" Index h’:zx Index ote: I:;Zx Index I:j:x Index
e s a5 | 1s | 1 04 [04 | 07 |07 STM™ 08N |08N | 09 | 09 0.4 | 04 [07 | 07
PSAt 30|31 | e | e 04 |04 | 07 |o7 sTS 23 |15 {13 |2 0.6 |04 |10 07
| sl sz o 04 |04 | 07 | o7 STW 08 |09 | 14| 15 03 | 03 | 06 | o6
s | ol e 15 | 15 04 {04 | 07 |07 sw 12 |05 |13] 14 04 [03 | 08| 06
s T o T e s s 04 |04 [07 |07 ves |29 LJCINI R R R 0.6 f - | -] -
s I P2 IV RS s 04 [03 | 08 | o6 Tov o [o [15] 15 0.6 |06 {09 | o9
s o] o s s 04 {04 |07 |07 Tio o | o |55 06 {06 |09 | o9
s 12 05 |13] 14 04 |03 | 08 |o6 es |29 WIIVH R R vl I I e
B 0 | 05|15 06 [06 | 09 | o9 UNPK 05N [osn |1y | g 0.4 [04 |07 | 07
sTB 05 |06 |14] 15 03 {03 | 06 |06 WAIT o | o [13]3 04 |04 |07] 07
ster 05 |06 |14] 15 0.3 |03 | 05 | o0 wD o] o |15 04 o4 |07] o7
50| w77 foes | o 03 [03 | 06 |06 XPSD 35 (35 |13 | 13 04 [04 [07 { 07
STH 05 [05| 14 | 14 03 fo3 [06 |06 xw 22 [15 [13 |13 04 |03 [08| 06
Notes: 22, No memory overlap,
23. Maximum memory overlap.,
24. One byte string is in registers,
25. Decimal number is in registers.
26. Add factor for object instruction.
27. Word mode — one byte string in registers.
28, Byte mode — one byte string in registers,
29. Byte string to be translated in registers.
30. CVA and CVS instructions require a 32-word table and should not be used in register=to-register
operations. The indirect word, however, may be located in a register.
134 Appendix D

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

A

access codes, 14,15,78
access protection, 14, 11,15,78
control image, 78
loading process, 78
accumulator, decimal, 10,55
address
actual, 13
control, 14,15, 16
direct reference, 12
effective, 13,30
indexed reference, 13
indirect reference, 12
input/output, 82,88
instruction, 17, 31
memory, 8
modification, 13,28
nonexistent, 24,23,76
reference, 12,30
register, 13,30
updated instruction, 72
virtual, 11,13,14,15,47,82
Analyze/Interpret instructions, 37,38
arithmetic shift, 47,48
armed interrupt, 20,81

block pointer, register, 11,18,77
Branch instructions, 72-74

byte format, 8

byte-string instructions, 60-67, 125

C

Call instructions, 74,6,27,77
Call instruction traps, 23,27,74,77
central processing unit, 10-27
channel end, 92
circular shift, 48
clock, real-time, 5,18, 19
command chaining, 89,91
comparison instructions, 44-46
computer modes, 9
condition code, 17,6, 23,29, 30,35,37,51,53
condition code setting for
decimal instructions, 56,26
fixed-point arithmetic instructions, 39,25
floating=point arithmetic instructions, 53,26,122, 123
load/store instructions, 31
push—-down instructions, 68,25
Shift instructions, 47,49
control instructions, 75-82
Conirol order, 90

conversion instructions, 49,6, 50
core memory, 8

dedicated addresses, 8,9, 18,23
counter interrupts, 19
CPU fast memory, 9

data chaining, 89,91
decimal
accumulator, 10,55
arithmetic fault trap, 26,17,23
arithmetic hardware, 5
iltegal digit, 55,26
instructions, 54-60
overflow, 55,23, 26
packed format, 55
zoned format, 55
device interrupt, 83,88
disabled interrupt, 20,81
disarmed interrupt, 20,81
displacement indexing, 5
doubleword
format, 8
I/O command, 90,83
program status, 17,22,24,75,76,94
stack pointer, 68,70

E

effective address, 13,30

effective location, 13,30
effective operand, 13

enabled interrupt, 21,81

Execute /Branch instructions, 72-74
external interrupt, 20

F

fail-safe, power, 20,1
fixed-point arithmetic
instructions, 39-44
overflow trap, 25,17,23,30
floating~point
addition and subtraction, 52,53, 54, 123
arithmetic fault trap, 26,23,31,52
arithmetic option, 5
hardware, 5
instructions, 50-54, 24,122,123, 124
multiplication and division, 52,53, 54, 122
normalize control, 17,30, 35,37,50
numbers, 50,51
shift, 48,49,124
significance control, 52,17,26,35,37
zero control, 52,17,26,35,37

Index

135

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

6

general characteristics, 1
general registers, 11,6
general -purpose features, 5

halfword, format, 8

immediate addressing, 12
immediate operand, 12
indexed reference address, 13
indexing, 13
index registers, 13, 10
indirect addressing, 13,11
information format, 8
inhibits, interrupt, 18,19,81
inhibits, push-down trap, 68
input/output

address, 82, 88

commands, 90

command doubleword, 90,83

flags, 91,92

instructions, 82-88

interrupt, 19,91, 92

operations, 89-92

status information, 82,83

unit address assignments, 82
instruction format, 11
instructions, 28-88

Analyze/Interpret, 37,38

Branch, 72-74

byte string, 60-67,125

Call, 74,6,27,77

comparison, 44-46

control, 75-82

conversion, 49,6,50

decimal, 54-60

Execute/Branch, 72-74

fixed-point arithmetic, 39-44

floating-point arithmetic, 50-54, 24, 122, 123

format, 11

input/output, 82-88

Interpret, 38,6

load/store, 31-37

logical, 46

nonexistent, 22,23,76

privileged, 75-88

push-down, 67-72,25

Shift, 47-49,124

translate, 63,6

unimplemented, 24,23,52
interleave /overlap, 97
Interpret instruction, 38,6
interrupt

active, 21

armed, 20,81

136 Index

channel end, 92
control panel, 94,19
counter-equals-zero, 19
count-pulse, 18, 19
device, 83,88
disabled, 20,81
disarmed, 20, 81
enabled, 20,81
external, 20

inhibits, 18,19,81
input /output, 19,91,92
internal, 18

locations, 19
override, 18,19
priority chain, 18
single~-instruction, 22
states, 20

system, control of, 20,18, 81
time of occurrence, 21
trigger, 82

unusual end, 88, 92
waiting, 20

zero byte count, 88, 91

L

loading process

access protection, 78

core memory, 98

memory map, 78

write protection, 79
load/store instructions, 31-37
logical instructions, 46
logical shift, 47

master mode, 9,17
memory
access protection, 14,11,15,78
addresses, 8
control, 11,14
fast, 9
fault indicators, 97,80
map, 11, 14,78
nonexistent address trap, 23,24
nonexistent addresses, 24, 23
parity error, 85,88,97
protection violation trap, 23,24, 76
write locks, 15,11,79
write protection, 11, 14,15, 79
memory map, 11,14,17,78
control image, 78
loading process, 78
multiplexor IOP (MIOP), 89, 3,5
multiplexor IOP (MIOP) expansion option, 89,3,5
multiuse features, 6

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

nonallowed operations, 76,22, 23
nonexistent instructions, 22,23,76
nonexistent memory addresses, 24,23, 76
normalized control, floating-point, 17,35, 50
numbers

decimal, 54

floating-point, 50,51

0

operator controls, 93-99
optional features, 4
overflow
decimal, 23, 26,55
fixed-point, 25,26
floating-point characteristic, 52,26, 51
override interrupt group, 18

P

packed decimal format, 55
parity error, memory, 85,88,97
peripheral equipment, 3,4
power fail ~safe, 20,1
priority interrupt chain, 18
privileged instructions, 75-88

violation trap, 23,24, 76
processor control panel, 93-98
program status doubleword, 17,22, 24,75,76,94
push-down

instructions, 67-72,25

stack limit trap, 25,23,68

read direct, 80

Read order, 90

real -time clocks, 5,18, 19
real-time features, 4

reference address, 12, 30
register address, 13,30

register block pointer, 11,18,77

S
selector IOP, 89,3,5

Sense order, 90

sense switches, 98,80
Shift instructions, 47-49, 124

significance control, floating-point, 52,17,26,35,37

single-instruction interrupt, 22
slave mode, 9,17

stack pointer doubleword, 68, 70
standard features, 4

states of an interrupt level, 20
Stop order, 91

system
input foutput, 82-92
interrupt, 18-22
organization, SIGMA 6, 8-27
SIGMA 6, 1-7
trap, 22-27

T

time of interrupt occurrence, 21

time-sharing features, 6

Transfer in Channel, 90

translate instruction, 63,6

trap, 22-27
Call instruction, 74,23,27,77
decimal arithmetic fault, 26,17,23
fixed~point overflow, 25,17, 23,30
floating-point arithmetic fault, 26,23,52
masks, 17,23,29
memory protection violation, 24, 23,76
nonallowed operations, 22,23, 76
nonexistent instructions, 24,23,76
nonexistent memory address, 24, 23,76
privileged instruction violation, 24,23, 76
push-down stack limit, 25, 23,68
unimplemented instruction, 24,23,52
watchdog timer runout, 26,23

unimplemented instructions, 24,23, 52
unusual end, 88,92
updated instruction address, 72

v

virtual address, 11,14, 15,47,82

watchdog timer runout trap, 26,23
word format, 8
write

direct, 80

key, 11,15,16,17

lock, 15,11,79

lock control image, 79

lock loading process, 79

order, 90

z

zero Dyte count interrupt, 88,91
zero control, floating-point, 52,17,26,31,37
zoned decimal format, 55

Index

137

Reader Comment Form

R0X

We would appreciate your comments and suggestions for improving this publication

Publication No. Rev. Letter| Title

Current Date

How did you use this publication?

D Learning D Installing D Sales

D Reference D Maintaining D Operating

is the material presented effectively?

(] Funy coverea [] weit iustratea [[] Well organizea [] crear

What is your overall rating of this publication?
D Very Good D Fair D Very Poor
D Good [:] Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number referances where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest (fold & fasten as shown on back. no postage needed if maited in US A)

PLEASE FOLD AND TAPE-—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO, 591563 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

e e .

--—-—————————j—————————- CUT ALONG LINE =

ENIL N AL AAMC L IaE

,TOLD ALONG 1L INF

XEROX SIGMA 6 INSTRUCTIONS (OPERATION CODES)

Mnemonic Instruction Name

LCFI Load Conditions and Floating Control Immediate
CALI Call 1

CAL2 Call 2

CAL3 Call 3

CAL4 Call 4

PLW Pull Word

PSW Push Word

PLM Pull Multiple

PSM Push Multiple

LPSD Lood Progrom Status Doubleword sp
XPSD Exchongeg Program Status Doubleword}pnwl.g.d
AD Add Doubleword

cD Compare Doubleword

LD Lood Doubleword

MSP Modify Stack Pointer

STD Store Doubleword

SD Subtract Doubleword

CLM Compare with Limits in Memory
LCD Lood Complement Doubleword
LAD Load Absolute Doubleword

FSL Floating Subtract Long

FAL Floating Add Long 4
FDL Floating Divide Long optional
FML Floating Multiply Long

Al Add Immediate

Cl Compare Immediate

LI Load Immediate

Ml Multiply Immediate

SF Shift Floating

S Shift

Cvs Convert by Subtraction

CVA Convert by Addition

M Lood Multiple

STM Store Multiple

WAIT Wait se

LRP Load Register Pointer] priviieand
AW Add Word

cw Compare Word

Lw Load Word

MTW Modify and Test Word

STW Store Word

Dw Divide Word

MW Multiply Word

SwW Subtract Word

CLR Compare with Limits in Register
LCwW Load Complement Word

LAW Load Absolute Word

FSS Floating Subtract Short

FAS Floating Add Short +
FDS Floating Divide Short g
FMS Floating Multiply Short

TTBS Translate and Test Byte String

TBS Translate Byte String

Page

35
74
74
74
74
69
69
71
7
75
75

45
32
71
36
41

33

54
53
54
54

32
41

47
50
49
35
37
79
7

32
44
36
42
42

33
33
53

54
54

Code

44
45

47
48
49
4A
48

4D
4E
4F

50
51

52
53
55
56
57
58
5A
58

60
61
63

65

67
68
69
6A
6B
6C
6D
6E
6F

70
71

72
73
74
75
76
77
78
79
7A
78
7€
7D
7E
7F

Mnemonic Instruction Name

ANLZ Analyze

G5 Compare Selective

XW Exchange Word

STS Store Selective

EOR Exclusive OR Word

OR OR Word

LS Load Selective

AND AND Word

SIO Start Input/Output

TIO Test Input/Output i
TDV Test Depvice : . iiegsd
HIO Halt Input/Output

AH Add Halfword

CH Compare Halfword

LH Load Halfword

MTH Modify and Test Halfword

STH Store Halfword

DH Divide Halfword

MH Multiply Halfword

SH Subtract Halfword

LCH Load Complement Halfword
LAH Load Absolute Halfword

CBS Compare Byte String

MBS Move Byte String

EBS Edit Byte String

BDR Branch on Decrementing Register
BIR Branch on Incrementing Register
AWM Add Word to Memory

EXU Execute

BCR Branch on Conditions Reset

BCS Branch on Conditions Set

BAL Branch and Link

INT Interpret

RD Read Direct

WD Write Direct .
AlO Acknowledge 1/0 Interrupt frivitesed
MMC Move to Memory Control

LCF Load Conditions and Floating Control
cB Compare Byte

LB Load Byte

MTB Modify and Test Byte

STCF Store Conditions and Floating Contrcl
STB Store Byte

PACK Pack Decimal Digits

UNPK Unpack Decimal Digits

DS Decimal Subtract

DA Decimal Add

DD Decimal Divide

DM Decimal Multiply

DSA Decimal Shift Arithmetic

DC Decimal Compare

DL Decimal Load

DsT Decimal Store

Poge

37
45
36
36

34

83
86
87
86

39
45
32

36
42
41
40
33
33

62
61

74

73
73
73
74

80
80
87
77

35

32
43
37
36

59
57
57
58
57
58

56
56

| Information Systems
in the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

24776, 3C1079, Printed in U.S.A.

XL47, Rev. 0

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	replyA
	replyB
	xBackA
	xBackB

